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Chapter 1

Introduction

In the past decades much attention has been paid to the phase behaviour of different
kinds of block copolymer systems both experimentally and theoretically [1]. This
phase behaviour determines to a large extend the mechanical, optical and electrical
properties of these materials. In a polymer chain a number of units are connected in a
linear fashion. These units are referred to as segments, beads or simply as monomers.
If all monomers are of the same kind a homopolymer is formed. In a block copolymer
different kinds of homopolymers or blocks are connected to each other. For example
a diblock copolymer consists of two different kinds of blocks A and B connected to
each other.

Block copolymers are applied in thermoplastic elastomers which form an inter-
esting class of synthetic materials. Their industrial interest primarily stems from the
fact that they combine the mechanical properties of elastomers with the processabil-
ity of thermoplastics, in other words they share their elasticity with rubbers but in
contrast with the latter they can be re-processed simply by re-melting. At least one
kind of block should be able to crystallize sufficiently above room temperature, while
the non-crystalizable blocks provide the elasticity to the system. In these systems the
crystallizable blocks form crosslinks between chains so that a network is formed.
Without crosslinks the chains can move freely with respect to each other so that the
system behaves as a liquid with a high viscosity. However due to the partial crystal-
lization the freedom of each chain to move is restricted.

In a melt of block copolymers the chains are not moving independently of each
other. Different kinds of interactions between chains are present that determine in part
the phase behaviour. The Flory-Huggins interaction [2] describes the incompatibility
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2 Chapter 1

between chemically different kinds of blocks. In a melt of diblock copolymers A-rich
and B-rich domains are formed if the Flory-Huggins interaction strength between A-
and B-blocks is strong enough, because both blocks are connected to each other. This
is called microphase separation. There are different kinds of microphase structures
possible which are displayed in the left part of Fig. (1.1). These are the so-called
classical structures which are formed close to the order-disorder phase transition. If
the Flory-Huggins interaction strength becomes larger more complicated structures
are possible such as the gyroid structure described in [3] and [4]. In [5] the classical

Figure 1.1: Possible phase structures

phases were determined in the phase diagram of a melt of diblock copolymers which
are totally flexible. The system is monodisperse with respect to the chain length and
chain composition. So the length of both the A- and B-block is identical for each
chain in the melt.

In [5] and [6] totally flexible chains are described as Gaussian chains. In a Gaus-
sian chain the bond between consecutive beads is modelled by a harmonic spring.
The spring- or bond length is governed by a Gaussian distribution with a certain
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width. The bonds can be rotated freely with respect to each other so that the chain
behaves as a random walk.

In a homopolymer melt, polymer chains can be described as random walks if the
chain length is long enough. This also holds for a copolymer melt if the incompati-
bility between different monomers or blocks is small enough. However, on smaller
length scales the chain does not necessarily behave as a Gaussian chain. For example
in DNA the helix structure restricts the possibility to bend the chain. To describe
this effect the chains are considered to be semi-flexible. This is accomplished by
adding a bending stiffness to the coarse grained description of the chain. Because of
the excluded volume effect the semi-flexible chains tend to align. A Maier-Saupe in-
teraction [7] between the semi-flexible blocks describes this alignment effect whose
strength becomes larger when the stiffness increases. If this interaction is strong
enough a nematic phase is formed in which semi-flexible blocks are oriented more
or less parallel to each other. This phase is displayed on the right side of Fig. (1.1)
in which the smectic-A and -C phase are also drawn. This smectic-A or -C phase
is formed instead of the lamellar phase, because chains become oriented due to the
semi-flexibility. In the hexagonal and bcc phase orientational ordering is also possi-
ble.

At high temperatures the diblock copolymers are in the disordered state which
is both homogeneous and isotropic. Here the kinetic energy of the chains is domi-
nating strongly over the Flory-Huggins and Maier-Saupe interaction between chains.
When the temperature is lowered a phase transition takes place at a certain critical
temperature. The disordered state is converted into a certain ordered structure which
could be the nematic phase or a microphase structure. When the phase transition is
second order or weakly first order the Landau theory can be applied in the neighbour-
hood of the phase transition point. In this thesis the phase behaviour is investigated
in this so-called weak segregation regime. The concentration and orientation profile
in a microphase structure can be approximated by a linear combination of harmonic
functions with the same period and amplitude. This so-called first harmonics ap-
proximation makes further analysis possible. Further away from the phase transition
at much lower temperatures the separation between A- and B-blocks becomes more
markedly. Here the weak segregation approximation is not valid. Other approaches
must be applied in the intermediate and strong segregation regime such as the self-
consistent field theory by Matsen and Schick [8].

In this thesis much attention has been paid to the influence of stiffness on the
phase behaviour of a melt of monodisperse diblock copolymers in the weak segrega-
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Figure 1.2: Bixon-Zwanzig model

tion regime. This problem was also investigated in [9], [10], [12] and [13]. In these
papers the spinodal is calculated which is the stability limit of the Flory-Huggins or
Maier-Saupe interaction parameter at which the order-disorder phase transition takes
place. In [12] the freely jointed chain model is used to describe semi-flexible chains.
In this discrete model rods are connected to each other which can be rotated freely
with respect to the connection points between the rods. In the derivation of the Lan-
dau free energy both a scalar (density) and a tensorial (orientation) order-parameter
were introduced. In [10] semi-flexible chains are described by the Kratky-Porod
model. However, an orientational order-parameter tensor was not introduced. A melt
of rod-coil diblocks has been investigated in [9] and [13] in which an orientational
tensor for the rod part is included in the derivation. In [12] and [13] the orientational
tensor varies spatially in a microphase structure, but in [9] only a global orientational
tensor is considered. In [9] besides the spinodal also the complete phase diagram was
calculated.

In this thesis another model is used to describe semi-flexibility which is the
Bixon-Zwanzig model of [15]. In this discrete model in Fig. (1.2) the monomers
are beads which are connected by springs. The springs are not completely free to
rotate with respect to each other. The rotational freedom is restricted by a fixed angle
θ between two subsequent springs. This angle θ determines the bending stiffness of
the chain. If θ = 180◦ the chain behaves as a rigid rod and in the limit θ → 0◦ it
becomes totally flexible. The discrete model is further coarse grained to a continuous
description by Bawendi and Freed [16]. In other models the total chain length is fixed
which makes further analysis difficult in the weak segregation regime. However, in
the Bawendi-Freed model the chain length is only on average constant due to the
presence of the springs. This less restrictive condition makes it possible to derive an
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Figure 1.3: Monodisperse and polydisperse diblocks

exact expression for the Landau free energy.
The analysis in the papers [5], [9], [10], [12] and [13] is restricted to a melt

of diblock copolymers which are monodisperse. In reality it is usually difficult to
synthesize such a melt of identical diblocks displayed in the left part of Fig. (1.3). In
the right part a polydisperse system is displayed. Here in some chains the A-block is
longer than average and in other chains it is shorter. The length of the B-block is also
variable and is assumed to be independent of the length of the A-block. Due to the
polydispersity macrophase separation is possible instead of microphase separation
[38]. A possible macrophase structure could be a melt with one big A-rich and one
big B-rich domain on a macroscopic length scale. The A-rich domain is formed
by collecting diblocks in which the A-block fraction is greater than average. The
remaining diblocks form the B-rich domain.

The effect of polydispersity on the phase behaviour of diblock copolymers is con-
sidered in several papers. In [22] the spinodal and phase diagram are determined for a
melt of polydisperse flexible diblock copolymers. The polydispersity is described by
the Schultz-Zimm distribution [2]. The influence of both stiffness and polydispersity
on the spinodal of a diblock melt is investigated in [23] which is an extension of the
analysis in [10].

In [6] the Landau free energy as a functional of the density order-parameter pro-
file is derived for a very general melt of flexible multi-block copolymers in the weak
segregation limit. The length of each block and the number of blocks in a multi-block
copolymer can be chosen arbitrary. The general melt is a mixture with an arbitrary
composition of different kinds of multi-block copolymers. In chapter two of this
thesis the theory has been extended by adding an arbitrary bending stiffness to each
block which is described by the Bawendi-Freed model of [16] mentioned earlier. Due
to the stiffness an orientational tensor must be introduced in the derivation of the Lan-
dau free energy. In chapter three this more general free energy has been applied to
a simple system, namely a melt of monodisperse semi-flexible diblock copolymers.
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The spinodal and complete phase diagram is calculated numerically for this simple
system. First the theory of chapter two is used to derive a simplified expression of
the Landau free energy as a function of only one variable. In the free energy of a
microphase structure a possible space dependent orientational tensor is taken into
account. It is explained how such a spatial orientation can be described and visual-
ized in a smectic phase and in a more complicated microphase such as the hexagonal
phase. In several phase diagrams structures of the melt are predicted as a function of
the composition, persistence length and the strength of the Flory-Huggins and Maier-
Saupe interaction. The influence of the Maier-Saupe interaction on the microphase
structure is thoroughly discussed. In chapter four we study an example of a melt
of polydisperse diblock copolymers. We use again the Schultz-Zimm distribution to
describe the polydispersity in block length. The spinodal and corresponding period
length scale are calculated as a function of polydispersity, stiffness and composition.
In certain systems macrophase separation has been observed if the degree of poly-
dispersity is large enough. Finally monodisperse triblocks are considered in the fifth
chapter. In the same way as in chapter three the complete phase diagram has been
calculated to predict structures of the melt as a function of composition, persistence
length and the strength of the Flory-Huggins and Maier-Saupe interactions. Further-
more the spinodal and corresponding period length scale are calculated as a function
of stiffness and chain composition. The theory and results of chapter two till five are
currently being prepared for publication in both the Journal of Chemical Physics and
Macromolecular Theory and Simulations.



Chapter 2

Theory

2.1 Introduction

In [6] the Landau free energy is derived for a general melt of flexible multi-block
copolymers. In a multi-block copolymer chain different kinds of homopolymers or
blocks are connected to each other. The length of each block and the number of
blocks in a multi-block copolymer can be chosen arbitrary. The general melt is a
mixture with an arbitrary composition of different kinds of multi-block chains. Each
block consists of one kind of monomers or segments. The chemical incompatibility
between two different kinds of monomers or blocks a and b is described by the Flory-
Huggins interaction χab. If χab is strong enough microphase separation between a and
b blocks occurs. The Landau free energy is expressed as a power series expansion
of order-parameters Ψα belonging to different kinds of monomers α = a, b, .... Ψα is
called the density order-parameter profile which we will call scalar order-parameter
from now on in the rest of this thesis. The minimum of this free energy with respect
to the scalar order-parameters Ψα describes the equilibrium phase behaviour of the
melt. If at least one of the scalar order-parameters Ψα is nonzero then the melt is in
a certain microphase, e.g. the bcc, hexagonal or lamellar phase. In [6] every block
is considered to be totally flexible. In this chapter the theory is extended to a general
melt of semi-flexible multi-block copolymers. Then a block of type a is in addition
characterized by a persistence length λa. This makes the theory much more general.
If λa → 0 block a becomes totally flexible and if λa → ∞ it can be regarded as a
rigid rod. Because of the stiffness the blocks may become oriented when there is
microphase separation. The theory is further extended by taking this orientation into

7
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account by means of the tensor Qα
i j with i, j = x, y, z and α = a, b, .... This extension

is realised by writing the Landau free energy as a power series expansion of both
scalar order-parameters Ψα and orientation tensors Qα

i j. Besides the Flory-Huggins
interaction another interaction is included which is the Maier-Saupe interaction ωab

between two different blocks or two blocks of the same kind . If this interaction is
strong enough local or global nematic ordering arises of a and/or b-blocks. The ne-
matic interaction ωab may also stimulate or counteract microphase separation. Con-
versely the Flory-Huggins interaction χab may influence the alignment of blocks.

To describe the semi-flexible chains we apply the Bawendi-Freed version of the
freely rotating chain model see [14], [15] and [16]. In this continuous chain model
the chain length L may fluctuate and is only on average constant. Therefore we use
a special parameter l to label the monomers. It is the average distance between a
certain monomer and one of the chain ends measured along the contour. If l would
be the actual contour length, then the tangent vector u(l) =

dr(l)
dl must be a unit vector.

Because l is the average distance the squared length u2(l) is only on average equal to
one,

〈
u2(l)

〉
= 1. This less restrictive condition makes the explicit derivation of the

Landau free energy possible.
In the next chapter we want to apply the theory to investigate numerically the

spinodals χs and ωs of a melt of monodisperse semi-flexible diblock copolymers. If
χ > χs a microphase is formed and if ω > ωs nematic ordering occurs. For simplicity
the three different parameters ωAA, ωAB and ωBB have been taken equal so that there
is only one parameter ω. The results will be compared with earlier results in [9], [10],
[11], [12] and [13]. First the theoretical approach used in these papers is considered
and compared to our theory.

In the paper of Friedel et. al. the Kratky-Porod model is used to describe semi-
flexibility. The spinodal χs was calculated according to Eq.(5) of [10],

χs =
1
2

min
{q}

S 0
AA(q) + S 0

BB(q) + 2S 0
AB(q)

S 0
AA(q)S 0

BB(q) − S 0
AB(q)2

, (2.1)

a result obtained by Leibler in [5]. In that paper a possible orientation of A and
B blocks in a certain microphase was not taken into account. This is justified if the
diblocks are totally flexible, but if the chains are semi-flexible Eq. (2.1) is incomplete.
In this expression the S 0

ab(q) with indices a, b = A, B are single-chain density-density
correlation functions which could only be calculated approximately according to Eq.
(7) in [10].

In [11] Matsen applied the self-consistent field theory to a melt of monodisperse
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semi-flexible diblock chains. The semi-flexibility is described by means of the Saitô
model introduced in [18]. The structure of the lamellar phase has been investigated
not only at a χ close to χs but also when χ � χs. However, a possible orientation of
A and B blocks is not taken into account in a microphase.

In Singh’s paper [12] the freely jointed chain model is used to describe semi-
flexible chains. In this discrete model rods are connected to each other which can be
rotated freely with respect to the connection points between them. The rod length is a
measure of the stiffness. This model is used to derive the Landau free energy of a melt
of monodisperse semi-flexible diblock copolymers. The free energy here is written as
a power series expansion of both the scalar order-parameters and orientation tensors
of A and B monomers. This allows a more accurate calculation of the spinodals χs

and ωs. In Singh’s paper both χs and ωs are calculated as a function of the stiffness
of the A- and B-block. It has also been investigated how χs depends on ω and ωs on
χ.

Holyst and Schick [13] considered a melt of monodisperse rod-coil diblocks. The
spinodal χs is calculated in a similar manner as in this thesis. However, the orientation
tensor Qα

i j(q) here has the same form as in Singh’s paper [12],

Qα
i j(q) = (nαi nαj −

1
3
δi j)Qα(q), (2.2)

in which it has also been assumed that the orientation vectors nA and nBof the A- and
B-block are equal, so nA = nB = n. In the paper of Holyst [13] this form has not
been used. The orientation tensor of the flexible part is neglected and tensor Qi j(q) of
the rod is not further reduced to the form as given by Eq. (2.2). So the second order
contribution to the free energy is written as a function of seven parameters Ψ(q) and
Qi j(q) with i j = xx, yy, zz, xy, xz and yz. In this way a more general expression for
the spinodal χs is obtained.

Reenders et. al. [9] calculated the complete phase diagram of a melt of monodis-
perse rod-coil diblocks. The phase diagrams they calculated displayed the various
phases in which the melt can reside such as the bcc, hexagonal, lamellar, nematic
and smectic-C state. Orientation of the flexible part was neglected. The orientation
tensor of the rod part has the same form as Eq. (2.2). Reenders et. al. [9] made
the ansatz that the wave vector q of the orientation tensor Qα

i j(q) can only be zero,
so that there is only global nematic ordering. A consequence of this ansatz is that a
possible orientation is negligibly small if χ > χs and ω = 0. Therefore the tensor
Qi j(q) = Qi j(0) is neglected in the part of the phase diagram in which ω < ωs. In the
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description of the smectic state a possible local orientation Qi j(q , 0) is not taken
into account. However, in [12], [13] and this chapter a possible contribution of ori-
entation tensors with nonzero q are not excluded if there is microphase separation.
In a certain microphase structure the wave vectors in the orientation tensor Qα

i j(q)
must be the same as those in the scalar order-parameter Ψ(q), because in that case
the symmetry of the structure is conserved. In this way the orientation may play a
more important role when χ > χs and ω = 0. However, in addition to the set of local
orientations Qα

i j(q) global orientations Qα
i j(0) in the same direction are still possible

in a certain microphase.

To describe a general melt of semi-flexible multi-block copolymers we will em-
ploy the typical coarse graining one usually encounters in polymer physics [21].
Consider a melt of nc copolymer chains in a volume V . As these chains consist of
arbitrary sequences (blocks) of up-to M chemically different types of monomers, the
number of possible chains is astronomically large. To denote the various different
species of chains present in the system, we will use the label s. Each chain belonging
to species s, of which there are ns present, will consist of Ns + 1 monomers also re-
ferred to as segments, connected by Ns deformable bonds of average length a having
fixed bond angles between them. The idea being that each of the M chemically dif-
ferent blocks of segments will have their own fixed angle between subsequent bonds.
We will label these M chemically different segments by Greek lowercase symbols
α, β etc. running from 1 to M. In the sequal we will use a continuous notation,
i.e. chains will be represented by continuous curves obtained via a proper continuum
limit (Ns −→ ∞, a −→ 0 such that Ls ≡ Nsa remains constant etc.). To specify a
given chain species s, Ising-like variables σαs (l) will be introduced with α = 1, ...,M
and l ∈ [0, Ls] in such a way thatσαs (l) ≡ 1 when segment l is of type α and σαs (l) ≡ 0
otherwise. The conformations of the ns chains belonging to species s will be specified
by the positions of the corresponding segments that make up these chains and the set
of tangent vectors along the chains, i.e. the set of curves {Rs

m(l) | 0 6 l 6 Ls}m with
m = 1, ..., ns defined with respect to some origin O in V , and the set of tangent vectors
to these curves {us

m(l) ≡ Ṙs
m(l) ≡ ∂Rs

m(l)
∂l | 0 6 l 6 Ls}m. As the bonds are deformable

these tangent vectors will not be of unit-length at every point along the contours of
the chains. Nevertheless, it will turn out that they will be unit vectors in an averaged
sense, as will become clear later-on. The total set {Rs

m(l) , us
m(l) | 0 6 l 6 Ls}sm

defines a configurational micro-state of the whole system. Such a micro-state will be
denoted by γ. A variable G which is a function of these micro-states, i.e. a so-called
state-variable, will be written as Ĝ ≡ G(γ). Examples of important state-variables
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which we will need later-on are the microscopic α-segment density ρ̂α(x), defined for
each x ∈ V by,

ρ̂α(x) ≡
∑

sm

∫ Ls

0
dlσαs (l) δ(x − Rs

m(l)) (2.3)

and the overall microscopic segment density ρ̂(x) through,

ρ̂(x) ≡
∑

α

ρ̂α(x) =
∑

sm

∫ Ls

0
dl δ(x − Rs

m(l)). (2.4)

By integrating these densities over V we obtain respectively the total number of α-
segments Nα and the overall number of segments N in the system. This last number
can be either written as

∑
α Nα or as

∑
s nsNs. Thus the fraction of α-segments is

given by f α ≡ Nα

N . Without loss of generality we will choose our length-scale in such
a way that each segment has a unit volume and therefore that N ≡ V . In that case it
follows that,

1
V

∫

V
d3x ρ̂(x) ≡ 1 (2.5)

and that f α can be written as

f α ≡ 1
V

∫

V
d3x ρ̂α(x). (2.6)

The description of semi-flexibility and the tendency to locally align will require the
introduction of the microscopic α-segment orientation-tensor density Ŝ α(x), defined
by,

Ŝ α(x) ≡
∑

sm

∫ Ls

0
dlσαs (l) us

m(l) us
m(l) δ(x − Rs

m(l)). (2.7)

In order to account approximately for the effect of excluded volume due to the re-
pulsive nature of the intra-chain and inter-chain potentials at short distances, we will
assume that the system is incompressible , i.e. that the overall microscopic seg-
ment density is not only equal to 1 ”globally”, as in (2.5), but also ”locally”, that is
ρ̂(x) ≡ 1, ∀x ∈ V . As our aim is to derive a Landau free energy for this copolymer
melt of M quasi-components [27], we need to define a set of 2M order-parameters
or actually 2M order- parameter fields to describe the possible inhomogeneous and
anisotropic phases of the system and to be able to calculate their free energy. These
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order-parameter fields can be defined by coarse graining the following set of micro-
scopic order-parameter fields,

ψ̂α(x) ≡ ρ̂α(x) − f α (α = 1, ...,M) (2.8)

and
Q̂ α(x) ≡ Ŝ α(x) − 1

3
ρ̂α(x) I (α = 1, ...,M). (2.9)

It is clear that due to the incompressibility assumption only M − 1 of the scalar fields
will be independent, as it follows that,

∑

α

ψ̂α(x) ≡ 0. (2.10)

The interactions between the various segments in this copolymer melt can be de-
scribed in terms of these microscopic order-parameter fields. This can be shown
in the following way. Under the assumption that segment- segment interactions are
pairwise additive, the total interaction energy Ŵ of the system will be of the form,

Ŵ ≡ 1
2

∑

αβ

∑

sm

∑

s′m′

∫ Ls

0
dl

∫ Ls′

0
dl′ σαs (l)σβs′(l

′) ×

×wαβ(Rs
m(l) − Rs′

m′(l
′) ; us

m(l) · us′
m′(l

′)). (2.11)

where wαβ(x ; u · u′) is the interaction potential between a segment of type α and a
segment of type β, which is assumed to be short-ranged in space, i.e. wαβ(x ; u · u′) '
w̃αβ( u · u′) δ(x) and w̃αβ( u · u′) can be expanded in the following way,

w̃αβ( u · u′) = εαβ − ωαβ ( u · u′)2 + ... (2.12)

This expansion does not contain the term u · u′ or any odd power of it for that matter
because of the fore-aft symmetry of the segments. Although formally Ŵ contains
”self-energy” terms, i.e. terms with α = β, s = s′, m = m′ and l = l′, we will not
bother to explicitly exclude them in the notation used in (2.11). By substituting (2.12)
into (2.11) it is easy to see that Ŵ can be written in terms of the specific microscopic
segment densities ρ̂α(x) (2.3) and Ŝ α(x) (2.7) as,

Ŵ ' 1
2

∑

αβ

εαβ

∫

V
d3x ρ̂α(x) ρ̂β(x) − 1

2

∑

αβ

ωαβ

∫

V
d3x Ŝ α(x) : Ŝ β(x). (2.13)
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By eliminating one of the ρ̂ ’s, say ρ̂M, from (2.13) using
∑
α ρ̂

α(x) ≡ 1 and substitut-
ing ρ̂α(x) = ψ̂α(x) + f α and Ŝ α(x) = Q̂ α(x) + 1

3 ρ̂
α(x) I, one ends up with,

Ŵ ' 1
2

∑

αβ

′
Eαβ

∫

V
d3x ψ̂α(x)ψ̂β(x) − 1

2

∑

αβ

ωαβ

∫

V
d3x Q̂α(x) : Q̂β(x)

−1
3

∑

αβ

ωαβ

∫

V
d3x (ψ̂α(x) + f α)TrQ̂β(x) (2.14)

with Eαβ ≡ ε′αβ − ε′αM − ε′βM + ε′MM and ε′αβ = εαβ − 1
3ωαβ. The accent in the first

term of Ŵ implies that both sums run from 1 to M − 1. In terms of the set of Flory
χ-parameters [2] between the different segments, i.e.,

χαβ ≡ εαβ −
εαα + εββ

2
with χαα = 0 ,∀α, (2.15)

this Eαβ can be written as,

Eαβ = χαβ − χαM − χβM ≡ −2 χ̃αβ (2.16)

and therefore finally Ŵ becomes,

Ŵ ' −
∑

αβ

′
χ̃αβ

∫

V
d3x ψ̂α(x)ψ̂β(x) − 1

2

∑

αβ

ωαβ

∫

V
d3x Q̂α(x) : Q̂β(x)

−1
3

∑

αβ

ωαβ

∫

V
d3x (ψ̂α(x) + f α)TrQ̂β(x). (2.17)

For the binary case (M = 2), the only remaining χ̃-parameter, χ̃11, reduces to the
more familiar χ12. With this interaction energy of the copolymer melt we can for-
mulate the system’s partition function Z, but for this it is necessary to specify the
unnormalized statistical weight e−Ĥ0 (we use units such that kBT = 1) of the system
in absence of these interactions. As we want to allow chains locally to have an arbi-
trary degree of flexibility, say ranging from fully flexible to rigid-rod like behaviour,
we will describe the unperturbed semi-flexible melt by an ensemble of locally per-
sistent Gaussian chains in the spirit of the Bawendi-Freed approach [15], [16]. The
unperturbed Hamiltonian Ĥ0 in this approach is given by,

Ĥ0 ≡ 3
4

∑

sm

{[
us

m(0)
]2

+
[
us

m(Ls)
]2
}

+

+
3
4

∑

sm

∫ Ls

0
dl

{
1

λs(l)

[
us

m(l)
]2

+ λs(l)
[
u̇s

m(l)
]2
}
, (2.18)
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where λs(l) denotes the local persistence length of chains of type s . For a multiblock
copolymer this λs(l) will have the following form,

λs(l) ≡
Nb

s∑

i=1

λ(i)
s

θ(l −
i−1∑

j=1

L( j)
s ) − θ(l −

i∑

j=1

L( j)
s )

 , (2.19)

where L( j)
s and λ(i)

s respectively denote the block - and the persistence length of the j-th
block in a chain of type s which consists of Nb

s blocks. The first term in (2.18) con-
taining the orientation vectors of the endpoints of the chains and the particular choice
of the coefficients in the second term of (2.18) ensure homogeneity of the chains and
Porod-Kratky like behavior in an averaged sense, i.e. 〈

[
us

m(l)
]2 〉0 = 1, ∀l ∈ [0, Ls].

〈 ... 〉0 is an average over all possible chain configurations of one single free chain. It
is defined in Eq. (2.35) in section 2.2.

The total Hamiltonian Ĥ for a certain melt configuration contains the unperturbed
Hamiltonian Ĥ0 and the total interaction energy Ŵ,

Ĥ = Ĥ0 + Ŵ. (2.20)

Every configuration gives a contribution exp(−Ĥ) to the partition function Z. In
section 2.2 a functional integral Z over all possible configurations is evaluated. From
the partition function Z the Landau free energy FL is derived by considering the most
dominant contribution to Z. This contribution corresponds to the most probable i.e.
equilibrium state of the melt. The final result (in units of kBT ) is given by,

FL

V
= min

Ψ,Υ
{(Γ(2)

ab − χ̃ab)ΨaΨb + 2Γ
(2)
ab

ΨaΥb+

(Γ(2)
ab
− 1

2
ωab)ΥaΥb − 1

3
ωabΥa,i jδi j(Ψb + f b)+

Γ
(3)
abcΨ

aΨbΨc + 3Γ
(3)
abcΨ

aΨbΥc + 3Γ
(3)
abc

ΨaΥbΥc + Γ
(3)
abc

ΥaΥbΥc+

Γ
(4)
abcdΨaΨbΨcΨd + 4Γ

(4)
abcd

ΨaΨbΨcΥd + 6Γ
(4)
abcd

ΨaΨbΥcΥd+

4Γ
(4)
abcd

ΨaΥbΥcΥd + Γ
(4)
abcd

ΥaΥbΥcΥd} (2.21)

with χ̃ab ≡ χ̃αβ δ(q1
+ q

2
), ωab ≡ ωαβ |2δii′δ j j′ − δi jδi′ j′ | δ(q1

+ q
2
), Ψa ≡ ψα(−q

1
)

V , Υa ≡
Qα

i j(−q
1
)

V and f b = f βδ(q
2
). In this expression of the free energy we use the composite
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labels a ≡ (q
1
, 0, α), b ≡ (q

2
, 0, β) etc. and a ≡ (q

1
, i j, α), b ≡ (q

2
, i′ j′, β). In

the indices a and b the pairs i j and i′ j′ are one of the six unique pairs xx, yy, zz, xy,
xz and yz. The coefficient functions (Γ’s) are called vertices and are defined by Eq.
(2.76), (2.77) and (2.78) in section 2.2.

2.2 Derivation of a Landau free energy for a general semi-
flexible block copolymer melt

In this section the Landau free energy given by Eq. (2.21) is derived. The starting
point of the derivation is the partition function Z, i.e. the sum of the Boltzmann
weights over all allowed states of the system. The set of all allowed states furnishes
the so-called state-space or configuration-space Γ of the system, which in this case
is given by,

Γ ≡ {{Rs
m, u

s
m}sm | us

m ≡ Ṙs
m, ∀ m, s & ρ̂(x) = 1, ∀x ∈ V}. (2.22)

As we are ultimately only interested in differences in free energy between possible
inhomogeneous and/or anisotropic phases of the system, all combinatorial terms will
be left out of this partition function since they only lead to constant terms in the free
energy. With this in mind Z can be written as,

Z ≡
∏

sm

∫
d3Ũ s

m

∫
d3U s

mG({U s
m, Ls} | {Ũ s

m, 0}), (2.23)

where the orientational Green’s function G({U s
m, Ls} | {Ũ s

m, 0}) is defined by,

G ≡
∏

sm

∫
DRs

m

∫ (Ls,U s
m)

(0,Ũ
s
m)

Dus
m δ

[
Rs

m −
∫

dl us
m(l)

]
δ
[
1 − ρ̂ ]

e−(Ĥ0+Ŵ) (2.24)

which gives the probability that each chain has a certain initial and final orientation.
In this coarse grained description incompressibility, which is due to interactions at
the molecular level, has to be explicitly accounted for via the delta function δ

[
1 − ρ̂ ]

.
This partition function will be transformed in four steps into a form which is more
amendable for further analysis. The first step involves a formal shift of the state-
variable dependence of e−Ŵ in (2.24). This is done by introducing the following two
functional decompositions of the identity into G,
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∏

µ

′
∫

Dψµ δ
[
ψµ − ψ̂µ

]
= 1 (2.25)

and ∏

ν

∫
DQν δ

[
Qν − Q̂ν

]
= I (2.26)

which yield,

G =
∏

µ

′
∫

Dψµ
∏

ν

∫
DQν e−W ×

×
∏

sm

∫
DRs

m

∫ (Ls,U s
m)

(0,Ũ
s
m)

Dus
m e−Ĥ0 δ

[
Rs

m −
∫

dl us
m(l)

]
δ
[
1 − ρ̂ ] ×

×
∏

λ

′ ∏

η

δ
[
ψλ − ψ̂λ

]
δ
[
Qη − Q̂η

]
. (2.27)

The elements Qν
i j and Qν

ji of the tensor Qν in which i , j are identical, but in Eq.
(2.27) they are treated as independent parameters. At a certain point this would ob-
struct the further derivation of the Landau free energy. This happens when we solve
Eq. (2.63) and (2.64) iteratively, because then the matrix Aab would not be invertible.
In this matrix the rows and columns in which i j = xy, yz and xz would be identical to
the rows and columns with reversed indices i j = yx, zy and zx. Such a matrix is not
invertible. Therefore in the functional integral in Eq. (2.27) only the elements Qν

i j
with unique pairs xx, yy, zz, xy, yz and xz may occur if we want to derive the desired
expression of the Landau free energy. In the rest of the derivation we will ignore the
other pairs yx, zy and zx. In the interaction energy W given by Eq. (2.17) the terms
containing elements Qν

i j with i , j are counted twice.
The second step involves substitution of the following functional spectral repre-

sentations for the last 2M ”delta-functions” in the above expression, i.e.,

δ
[
1 − ρ̂ ] ≡

∫
Dh0 ei

∫
V d3 x h0(x) {1−ρ̂(x)} (2.28)

δ
[
ψλ − ψ̂λ

]
≡

∫
Dhλ ei

∫
V d3 x hλ(x) {ψλ(x)−ψ̂λ(x)} (λ = 1, ...,M − 1)

(2.29)

δ
[
Qη − Q̂η

]
≡

∫
DKη e

i
∫

V d3 x Kη(x) : {Qη(x)−Q̂η(x)}
(η = 1, ...,M)

(2.30)
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resulting in,

G =
∏

µ

′
∫

Dψµ
∏

ν

∫
DQν e−W ×

×
∫

Dh0
∏

λ

′
∫

Dhλ
∏

η

∫
DKη e

i
∫

V d3 x {h0(x) +
∑
α

′
hα(x)ψα(x)+

∑
β

Kβ(x) : Qβ(x)}
×

×
∏

sm

∫
DRs

m

∫ (Ls,U s
m)

(0,Ũ
s
m)

Dus
m e−Ĥ0 δ

[
Rs

m −
∫

dl us
m(l)

]
×

×e
− i

∫
V d3 x {h0(x) ρ̂(x) +

∑
α

′
hα(x) ψ̂α(x)+

∑
β

Kβ(x) : Q̂β(x)}
. (2.31)

In the third step the auxiliary integration fields h0(x), h1(x), ..., hM−1(x) are trans-
formed to new fields J1(x), ..., JM(x), defined in the following way,

Jα(x) ≡ hα(x) + h0(x) (α = 1, ...,M − 1)

JM(x) ≡ h0(x). (2.32)

Using this isometric transformation and (2.4), (2.8) and (2.10) it is easily verified that
the following identities hold,

h0(x) ρ̂(x) +
∑

α

′
hα(x) ψ̂α(x) = JM(x) +

∑

α

′
Jα(x) ρ̂α(x) −

∑

α

f α Jα(x)

(2.33a)

h0(x) +
∑

α

′
hα(x)ψα(x) = JM(x) +

∑

α

Jα(x)ψα(x) (2.33b)

and so by combining (2.31) with (2.23) Z can be written as,

Z =
∏

µ

′
∫

Dψµ
∏

ν

∫
DQν e−W ×

×
∏

λ

∫
DJλ

∏

η

∫
DKη e

i
∫

V d3 x {∑
α

Jα(x) [ψα(x)+ f α]+
∑
β

Kβ(x) :[ Qβ(x)+ 1
3ρ

β(x) I]}
×

×〈e
− i

∫
V d3 x {∑

α
Jα(x) ρ̂α(x)+

∑
β

Kβ(x) : Q̂
β
(x)}
〉0. (2.34)

In this expression 〈...〉0 denotes an average with respect to the unperturbed ensemble
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of chain conformations defined by Ĥ0, i.e.,

〈 Â 〉0 ≡
∏

sm

∫
d3Ũ s

m

∫
d3U s

m

∫
DRs

m

∫ (Ls,U s
m)

(0,Ũ
s
m)

Dus
m e−Ĥ0 ×

×δ
[
Rs

m −
∫

dl us
m(l)

]
Â, (2.35)

where the functional integrations over {Rs
m} and {us

m} are defined in such a way that
〈1 〉0 ≡ 1. The last step in the transformation of Z boils down to rewriting the inte-
grand of (2.34) using the fields J̃1(x), ..., J̃M(x) in the spirit of [31],

J̃α(x) ≡ Jα(x) − 1
V

∫

V
d3y Jα(y) (α = 1, ...,M). (2.36)

It is easy to see that the use of these new fields in conjunction with (2.6) will eliminate
the terms in (2.34) involving f α. Thus we finally end up with,

Z =
∏

µ

′
∫

Dψµ
∏

ν

∫
DQν e−W ×

×
∏

λ

∫
DJλ

∏

η

∫
DKη e

i
∫

V d3 x {∑
α

J̃α(x)ψα(x)+
∑
β

Kβ(x) : Qβ(x)}+Λ

(2.37)

with Λ defined by,

Λ ≡ ln 〈e
− i

∫
V d3 x {∑

α
J̃α(x) ρ̂α(x)+

∑
β

Kβ(x) : Q̂
β
(x)}
〉0. (2.38)

In order to be able to extract a Landau free energy from (2.37), we will need to rework
Λ somewhat more. This, however, turns out to be the most essential step in the whole
derivation of this free energy. Using the decompositions

ρ̂α(x) ≡
∑

sm

ρ̂αsm(x) where ρ̂αsm(x) ≡
∫ Ls

0
dl σαs (l) δ(x − Rs

m(l)) (2.39)

Ŝ β(x) ≡
∑

sm

Ŝ β

sm
(x) where

Ŝ β

sm
(x) ≡

∫ Ls

0
dlσαs (l) us

m(l) us
m(l) δ(x − Rs

m(l)) (2.40)



Theory 19

and

Ĥ0 ≡
∑

sm

Ĥsm
0 where

Ĥsm
0 ≡ 3

4

{[
us

m(0)
]2

+
[
us

m(Ls)
]2
}

+

+
3
4

∫ Ls

0
dl

{
1

λs(l)

[
us

m(l)
]2

+ λs(l)
[
u̇s

m(l)
]2
}

(2.41)

it follows that (2.38) can be written as,

Λ ≡
∑

sm

ln
∫

d3Ũ s
m

∫
d3U s

m

∫
DRs

m

∫
Dus

mδ( us
m(0) − Ũ

s
m) δ( us

m(Ls) − U s
m) ×

×δ
[
Rs

m −
∫

dl us
m(l)

]
e
−Ĥsm

0 − i
∫

V d3 x {∑
α

J̃α(x) ρ̂αsm(x)+
∑
β

Kβ(x) : Q̂
β

sm
(x)}
.

(2.42)

From a closer inspection of this last expression, it becomes clear that each term in
(2.42) in the sum over m for a given chain type s, i.e. each term in the sum over all
chains of a given type in the system, gives the same contribution to Λ. Therefore Λ

can be simplified to,

Λ =
∑

s

ns ln
∫

d3Ũ s
∫

d3U s
∫

DRs
∫

Dusδ( us(0) − Ũ
s
) δ( us(Ls) − U s) ×

×δ
[
Rs −

∫
dl us(l)

]
e
−Ĥs

0− i
∫

V d3 x {∑
α

J̃α(x) ρ̂αs (x)+
∑
β

Kβ(x) : Q̂
β

s
(x)}
. (2.43)

Note that the dummy index m has been dropped in all quantities. By introducing the
number density of chains of type s, i.e. ρs ≡ ns

V , and defining

Ω̂ ≡ − i
∑

α

∫

V
d3x {J̃α(x) ρ̂αs (x) + Kα(x) : Q̂

α

s
(x)} (2.44)

(2.43) can finally be written as,

Λ ≡ V
∑

s

ρs ln 〈 eΩ̂s 〉0 ≡ V 〈 ln 〈 eΩ̂〉0〉d. (2.45)
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In this last expression the second average with subscript d is a disorder average, i.e.
an average over the quenched disorder in the copolymer chains. More important this
quenched average involves the logarithm of a quantity proportional to the partition
function, as can be seen from (2.37), and therefore it is the free energy that is being
averaged over the disorder. To calculate the average of the logarithm of the partition
function one can resort to the replica method [28], but this is not necessary for the
kind of quenched disorder one encounters in statistical copolymer systems, as will be
shown now.

As the Landau free energy for this system involves an expansion up-to fourth
order in the order-parameter fields {ψα(x)} and {Qβ(x)} , the thing to do is to expand

Λ up-to fourth order in Ω̂. The reason for this step will become clear in the process.
The result is,

Λ

V
' 1

2
〈〈 Ω̂2 〉0〉d +

1
6
〈〈 Ω̂3 〉0〉d +

1
24
〈〈 Ω̂4 〉0〉d − 1

8
〈〈 Ω̂2 〉20〉d. (2.46)

where we have used the fact that 〈 Ω̂ 〉0 = 0, a result that is easily obtained. Let’s first
consider the second-order term. By using (2.44) it follows that,

1
2
〈〈 Ω̂2 〉0〉d ≡ (−i)2

2

∑

αβ

∫

V
d3x

∫

V
d3y {J̃α(x) J̃β(y)

∑

s

ρs〈 ρ̂αs (x) ρ̂βs(y) 〉0 +

+2
∑

i j

Kα
i j(x) J̃β(y)

∑

s

ρs〈 Q̂α
s,i j(x) ρ̂βs(y) 〉0 +

+
∑

i j

∑

i′ j′
Kα

i j(x) Kβ
i′ j′(y)

∑

s

ρs〈Q̂α
s,i j(x) Q̂β

s,i′ j′(y) 〉0}. (2.47)

Now by invoking the Fourier-representations of both ρ̂αs (x) and Q̂α
s,i j(x), i.e.,

ρ̂s
α(x) ≡ 1

V

∑

q

∫ Ls

0
dlσαs (l) eiq·(x−Rs(l)) (2.48)

and

Q̂α
s,i j(x) ≡ 1

V

∑

q

∫ Ls

0
dlσαs (l) (us(l) us(l) − 1

3
I)eiq·(x−Rs(l)) (2.49)
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the four correlation functions appearing in (2.47) can be written as,

〈〈 ρ̂α(x) ρ̂β(y) 〉0〉d =
1

V2

∑

qq′
ei(q·x+q′·y)

∑

s

ρs

∫ Ls

0
dl

∫ Ls

0
dl′ σαs (l)σβs(l′) ×

×〈 e− i(q·Rs(l)+q
′ ·Rs(l′)) 〉0

≡ 1
V2

∑

qq′
ei(q·x+q′·y)

∑

s

ρsA
JJ,αβ
s (q, q

′
)

≡ 1
V2

∑

qq′
ei(q·x+q′·y) AJJ,αβ(q, q

′
), (2.50)

〈〈 Q̂α
s,i j(x) ρ̂βs(y) 〉0〉d =

1
V2

∑

qq′
ei(q·x+q′·y)

∑

s

ρs

∫ Ls

0
dl

∫ Ls

0
dl′ σαs (l)σβs(l′) ×

×〈 (us
i (l) us

j(l) −
1
3
δi j) e− i(q·Rs(l)+q

′ ·Rs(l′)) 〉0

≡ 1
V2

∑

qq′
ei(q·x+q′·y)

∑

s

ρsA
KJ,αβ
s,i j (q, q

′
)

≡ 1
V2

∑

qq′
ei(q·x+q′·y) AKJ,αβ

i j (q, q
′
) (2.51)

and

〈〈 Q̂α
s,i j(x) Q̂β

s,i′ j′(y) 〉0〉d =
1

V2

∑

qq′
ei(q·x+q′·y)

∑

s

ρs

∫ Ls

0
dl

∫ Ls

0
dl′ σαs (l)σβs(l′) ×

×〈 (us
i (l) us

j(l) −
1
3
δi j) (us

i′(l
′) us

j′(l
′) − 1

3
δi′ j′ )e− i(q·Rs(l)+q

′ ·Rs(l′)) 〉0

≡ 1
V2

∑

qq′
ei(q·x+q′·y)

∑

s

ρsA
KK,αβ
s,i ji′ j′ (q, q

′
)

≡ 1
V2

∑

qq′
ei(q·x+q′·y) AKK,αβ

i ji′ j′ (q, q
′
). (2.52)

The functions AJJ,αβ(q, q
′
), AKJ,αβ

i j (q, q
′
) and AKK,αβ

i ji′ j′ (q, q
′
) that appear in respectively

(2.50), (2.51) and (2.52) will be calculated in appendix A. Now, with the help of these
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last three expressions this second-order contribution to Λ
V becomes,

1
2
〈〈 Ω̂2 〉0〉d ≡ (−i)2

2V2

∑

αβ

∑

q
1
,q

2

{AJJ,αβ(q
1
, q

2
) J̃α(q

1
) J̃β(q

2
) +

+2
∑

i j

AKJ,αβ
i j (q

1
, q

2
) Kα

i j(q1
) J̃β(q

2
) +

+
∑

i1 j1

∑

i2 j2

AKK,αβ
i1 j1i2 j2

(q
1
, q

2
) Kα

i1 j1(q
1
) Kβ

i2 j2
(q

2
)}, (2.53)

where f (q) denotes the Fourier-transform of f (x), i.e.,

f (q) ≡
∫

V
d3x ei q·x f (x). (2.54)

As the orientational Green’s function G (2.34) involves a functional integra-
tion over the J fields, while 1

2 〈〈 Ω̂2 〉0〉d involves the J̃ fields, we need to transform
1
2 〈〈 Ω̂2 〉0〉d to the former kind of fields. This is most easily done by recalling that
from the definition of J̃α(x) (2.36), it follows that,

J̃α(q) ≡ Jα(q) − Jα(0) δ(q). (2.55)

In other words J̃α(q) = Jα(q) for q , 0 and if q = 0 then J̃α(0) = 0. Therefore as the
sums over the q’s belonging to the fields J̃α(q) in Eq. (2.53) are anyhow restricted to
non-zero q’s, we can simply change the J̃’s herein to J’s. Symbolically we now can
write the expression for 1

2 〈〈 Ω̂2 〉0〉d as,

1
2
〈〈 Ω̂2 〉0〉d = −1

2
[Aab vavb + 2 Aab wavb + Aab wawb], (2.56)

where we have introduced two sets of composite labels a ≡ (q , 0, α), b ≡ (q , 0, β)

etc. and a ≡ (q, i j, α), b ≡ (q′, i′ j′, β) etc. and where va ≡ Jα(q)
V and wa ≡

Kα
i j(q)
V .

Furthermore the Einstein summation convention has been used. The third and fourth



Theory 23

order contributions of Λ
V are given by,

1
6
〈〈 Ω̂3 〉0〉d = +

i
6

[Babc vavbvc + 3 Babc wavbvc+

+3 Babc wawbvc + Babc wawbwc] (2.57)

and
1

24
〈〈 Ω̂4 〉0〉d − 1

8
〈〈 Ω̂2 〉20〉d = +

1
24

[Cabcd vavbvcvd+

+4 Cabcd wavbvcvd + 6 Cabcd wawbvcvd+

+4 Cabcd wawbwcvd + Cabcd wawbwcwd]. (2.58)

In the second order contribution (2.56) the A’s are second order single-chain corre-
lation functions. These are defined in Eq. (2.50), (2.51) and (2.52). In the third
order term the B’s are third order single-chain correlation functions defined in a
similar way. The C’s in Eq. (2.58) contain a regular and a non-local contribution,
Cabcd = Cabcd

reg −Cabcd
nl , Cabcd = Cabcd

reg −Cabcd
nl , etc. The regular contributions are fourth

order single-chain correlation functions which are similar to the A’s and B’s. The non-
local correlation functions of a chain of kind s follow from the term −1

8 〈〈 Ω̂2 〉20〉d and
are given by,

Cabcd
nl,s = Aab

s Acd
s + Aac

s Abd
s + Aad

s Abc
s ,

Cabcd
nl,s = 4Aab

s Acd
s + 4Aac

s Abd
s + 4Aad

s Abc
s ,

Cabcd
nl,s = 6Aab

s Acd
s + 6Aac

s Abd
s + 6Aad

s Abc
s ,

Cabcd
nl,s = 4Aab

s Acd
s + 4Aac

s Abd
s + 4Aad

s Abc
s

and

Cabcd
nl,s = Aab

s Acd
s + Aac

s Abd
s + Aad

s Abc
s . (2.59)

The quenched average is not taken over the A’s separately, but over the terms in the
non-local correlation functions, i.e.

∑
s
ρsAab

s Acd
s etc. These contributions to the fourth-

order coefficients are the so-called non-local terms, which are typical for polydisperse
copolymer melts and which vanish once the number of segment types M exceeds the
number of chain types in the system [27].

By Fourier-transforming all the integrals involving the ψ fields and the Q fields
and making use of the fact that according to the definition of χ̃αβ (see (2.16)) χ̃MM ≡
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0, the partition function Z (2.37) can be written as,

Z ≡
∏

c

′∏

d

∫
DΨc

∫
DΥd eV {χ̃abΨaΨb+ 1

2ωabΥaΥb} Z̃[Ψ,Υ] (2.60)

with χ̃ab ≡ χ̃αβ δ(q1
+ q

2
), ωab ≡ ωαβ |2δii′δ j j′ − δi jδi′ j′ | δ(q1

+ q
2
), Ψa ≡ ψα(−q)

V ,

Υa ≡ Qα
i j(−q)
V and

Z̃[Ψ,Υ] ≡
∏

g

∏

h

∫
Dvg

∫
Dwh eV {i [vaΨa+waΥa]+ Λ[v,w]

V }, (2.61)

where Ψ ≡ {Ψa}a and Υ ≡ {Υa}a. For large values of the system’s volume V ,
Z̃[Ψ,Υ] can be evaluated with the well-known saddle-point method, i.e. approxi-
mating Z̃[Ψ,Υ] by,

Z̃[Ψ,Υ] ' eV Φ[Ψ,Υ], (2.62)

where Φ[Ψ,Υ] is the stationary value of i [vaΨa + waΥa] +
Λ[v,w]

V with respect to the
set of v’s and w’s for which its absolute value is the smallest. This stationary point is
a solution of the following set of equations,

i Ψa = Aab vb + Aab wb −
i
2

Babc vbvc − i Babc wbvc − i
2

Babc wbwc +

−1
6

Cabcd vbvcvd − 1
2

Cabcd wbvcvd − 1
2

Cabcd wbwcvd − 1
6

Cabcd wbwcwd

,∀a (2.63)

and

i Υa = Aab wb + Aab vb − i
2

Babc vbvc − i Babc wbvc − i
2

Babc wbwc +

−1
6

Cabcd vbvcvd − 1
2

Cabcd wbvcvd − 1
2

Cabcd wbwcvd − 1
6

Cabcd wbwcwd

,∀ a. (2.64)

As we ultimately want to arrive at a Landau free energy as an expansion up-to fourth
order in the Ψa - and the Υa fields, we only need to solve these last two vector-
equations iteratively for va and wa up-to third order in the Ψ’s and the Υ’s. Now, the
set of equations (2.63) and (2.64) can be written in the following matrix form,
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
Ib
a A−1

ac Acb

A−1
ac Acb Ib

a



vb

wb

 =


iA−1

ab Ψb + ...

iA−1
ab

Υb + ...

 . (2.65)

where Ib
a and Ib

a are appropriate ”unit” matrices. By defining the matrix T to be the
inverse of the matrix on the lhs of this equation, i.e.,

T ≡


Ib
a A−1

ac Acb

A−1
ac Acb Ib

a


−1

(2.66)

it follows that the ”first order” solution is given by,


vb

wb

 = T


iA−1

ab Ψb

iA−1
ab

Υb

 . (2.67)

The contributions of terms second order in the Ψ’s and the Υ’s are then obtained by
substitution of this first order result in the terms which are quadratic in the v’s and the
w’s on the rhs of (2.65) and so on. The final result for va and wa up-to third order in
the Ψ’s and the Υ’s can then be written as,

va ≡ M(1)
ae Ψe + M(1)

ae Υe +
i
2

M(2)
ae f Ψ

eΨ f + iM(2)
ae f

ΨeΥ f +
i
2

M(2)
ae f

ΥeΥ f +

1
6

M(3)
ae fgΨ

eΨ f Ψg +
1
2

M(3)
ae fgΨ

eΨ f Υg +
1
2

M(3)
ae fg

ΨeΥ f Υg +
1
6

M(3)
ae fg

ΥeΥ f Υg

(2.68)

and

wa ≡ M(1)
ae Ψe + M(1)

ae Υe +
i
2

M(2)
ae f Ψ

eΨ f + iM(2)
ae f

ΨeΥ f +
i
2

M(2)
ae f

ΥeΥ f +

1
6

M(3)
ae fgΨ

eΨ f Ψg +
1
2

M(3)
ae fgΨ

eΨ f Υg +
1
2

M(3)
ae fg

ΨeΥ f Υg +
1
6

M(3)
ae fg

ΥeΥ f Υg

(2.69)

with the various coefficients given by,
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M(1)
ae ≡ i T b

a A−1
be (2.70a)

M(1)
ae ≡ i T b

a A−1
be (2.70b)

M(1)
ae ≡ i T b

a A−1
be

(2.70c)

M(1)
ae ≡ i T b

a A−1
be

(2.70d)

and
M(2)

ã̃e f̃
≡ −i M(1)

ãd̃
Bd̃b̃̃cM(1)

b̃̃e
M(1)

c̃ f̃
(2.71)

and
M(3)

ã̃e f̃ g̃
≡ −iM(1)

ã̃h

[
C h̃̃b̃cd̃ + 3i Bh̃̃b̃k M(1)

k̃̃l
Bl̃̃cd̃

]
M(1)

b̃̃e
M(1)

c̃ f̃
M(1)

d̃g̃
. (2.72)

In these last two expressions a label such as ã denotes both a and a and if ã appears
both as a subscript and a superscript, such as in xã y

ã, then the following summation
convention is implied xã y

ã ≡ xa y
a + xa y

a.
If we now substitute the Ψ−Υ expansions for va (2.2) and wa (2.69) into i [vaΨa +

waΥa] +
Λ[v,w]

V we obtain Φ[Ψ,Υ] and hence the partition function,

Z '
∏

c

′∏

d

∫
DΨc

∫
DΥd eV {χ̃abΨaΨb+ 1

2ωabΥaΥb+Φ[Ψ,Υ]}. (2.73)

The Landau free energy, that is the free energy of the system within the mean field
approximation, can be obtained by again applying the saddle-point method, but now
to approximately evaluate this last set of functional integrals. If we write the result
as,

Z ' e−FL , (2.74)

then this Landau free energy FL (in units of kBT ) is given by,

FL

V
= min

Ψ,Υ
{(Γ(2)

ab − χ̃ab)ΨaΨb + 2Γ
(2)
ab

ΨaΥb + (Γ(2)
ab
− 1

2
ωab)ΥaΥb+

+Γ
(3)
abcΨ

aΨbΨc + 3Γ
(3)
abcΨ

aΨbΥc + 3Γ
(3)
abc

ΨaΥbΥc + Γ
(3)
abc

ΥaΥbΥc+

+Γ
(4)
abcdΨaΨbΨcΨd + 4Γ

(4)
abcd

ΨaΨbΨcΥd + 6Γ
(4)
abcd

ΨaΨbΥcΥd+

+4Γ
(4)
abcd

ΨaΥbΥcΥd + Γ
(4)
abcd

ΥaΥbΥcΥd}. (2.75)
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The coefficient functions (Γ’s) in this expression are called vertices and are defined
by,

Γ
(2)
ã̃b
≡ 1

2

∑

perm(̃a,̃b)

[−iM(1)
ã̃b

+
1
2

Ac̃d̃ M(1)
c̃̃a M(1)

d̃b̃
] (2.76)

and

Γ
(3)
ã̃b̃c
≡ 1

6

∑

perm(̃a,̃b,̃c)

[
1
2

M(2)
ã̃b̃c

+
i
2

Ad̃ẽM(2)
d̃ã̃b

M(1)
ẽ̃c −

i
6

Bd̃ẽ f̃ M(1)
d̃ã

M(1)
ẽ̃b

M(1)
f̃ c̃

] (2.77)

and finally

Γ
(4)
ã̃b̃cd̃
≡ 1

24

∑

perm(̃a,̃b,̃c,d̃)

[− i
6

M(3)
ã̃b̃cd̃

+
1
6

Aẽ f̃ M(3)
ẽ̃ãb̃c

M(1)
f̃ d̃
− 1

8
Aẽ f̃ M(2)

ẽ̃ãb
M(2)

f̃ c̃d̃
+

1
4

Bẽ f̃ g̃M(2)
ẽ̃ãb

M(1)
f̃ c̃

M(1)
g̃d̃
− 1

24
Cẽ f̃ g̃̃hM(1)

ẽ̃a M(1)
f̃ b̃

M(1)
g̃̃c M(1)

h̃d̃
]. (2.78)

The fourth order vertex is symmetric with respect to a permutation of the indices ã, b̃,
c̃ and d̃. The second and third order vertex contain the same kind of symmetry. The
terms in the vertices are not always permutational symmetric. For example if ã = a
and b̃ = b the vertex Γ

(2)
ab

contains the terms −iM(1)
ab

and −iM(1)
ba

. From Eq.(2.70b)

and (2.70c) it is clear that in general M(1)
ab
, M(1)

ba
.

2.3 Concluding remarks

In this chapter we derived an expression of the Landau free energy of a general melt
of semi-flexible multi-block copolymers. The Landau free energy is written as a
power series expansion of the scalar order-parameter Ψa and the orientation tensor
Υa. The orientation tensor Υa has been taken into account, because the blocks have
a certain persistence length λα. The stiffness of the chains is described by means of
the Bawendi-Freed model [16].





Chapter 3

Phase behaviour of a melt of
monodisperse semi-flexible
diblock copolymers

3.1 Introduction

In the past decades much attention has been paid to the phase behaviour of melts
of diblock copolymers and other kinds of block copolymers. This phase behaviour
will be influenced by both the bending stiffness of blocks and the polydispersity in
block length. In the literature these factors are not always included in the theoretical
description of block copolymers, but in reality they may play an important role. In
this chapter only the bending stiffness is considered.

In [23] a melt of diblock copolymers is investigated which is an extension of [10].
In [10] only semi-flexibility is taken into account, but in [23] polydispersity is also
included. The polydispersity is described by the Schultz-Zimm distribution and other
distributions. The structure factor and spinodal χsL are calculated for both a polydis-
perse and a monodisperse diblock melt to see the differences. It was found that the
spinodal χsL increases if one or both blocks are polydisperse. So here polydispersity
counteracts microphase separation.

In [9–13] a diblock melt is considered in which polydispersity is ignored. In
[9, 13] a rod-coil system is investigated and in [10–12] the diblock is semi-flexible.
In chapter 2 a general theory is developed which is applied to a monodisperse semi-
flexible diblock melt in this chapter. The spinodals χsL and ωsL are calculated in

29
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section 3.5. The results in this section are compared to the results of [9–13].

The system described in chapter 2 is very general. Both polydispersity and semi-
flexibility are included. In that chapter the Landau free energy is derived for a melt
of semi-flexible multi-block copolymers. The incompatibility of chemically different
blocks is described by the Flory-Huggins interaction. If this interaction is strong
enough microphase separation occurs. Besides the Flory-Huggins interaction another
interaction is included which is the Maier-Saupe interaction. If it is strong enough
nematic ordering takes place, but it can also stimulate microphase separation. By
means of the expression of the Landau free energy the spinodals χsL and ωsL are
calculated numerically for a melt of monodisperse semi-flexible diblock copolymers
in section 3.5. In section 3.5 it has not been investigated which structures, for example
the bcc phase, are formed when microphase separation has become possible. The
complete phase diagram is calculated in section 3.6. This is a generalisation of the
system investigated by Leibler in [5]. In that paper the phase diagram is calculated for
a melt of monodisperse diblock copolymers which are totally flexible. The Landau
free energy of this system is written as a power series expansion of only the scalar
order-parameter. In our system besides a scalar order-parameter we also have to take
into account an orientation tensor because of the persistence length of A- and B-
blocks. The orientation of chains is induced by the Maier-Saupe interaction. Without
this interaction local and global alignment may also be possible if there is microphase
separation. In [5] it is justified to neglect a possible orientation, because the diblock
chains are totally flexible.

In [32] the system of Leibler is extended by including corrections due to compo-
sition fluctuations. In this thesis these corrections are ignored. According to [32] the
fluctuation corrections disappear when the chain length becomes infinite. In [22] the
system is further extended by including polydispersity. In this paper the scattering
function and spinodal χsL are calculated in which the polydispersity is modelled by
the Schultz-Zimm distribution. In contrast to [23] the spinodal χsL is lowered in [22]
when the degree of polydispersity increases. The phase diagram has also been deter-
mined for different degrees of polydispersity. If there is no polydispersity it appeared
that the phase diagram is in agreement with the results calculated in [32].

In [9] Reenders calculated the complete phase diagram of a melt of monodisperse
rod-coil diblocks. A possible orientation of the flexible part is neglected. Reenders
made the ansatz that there is only global nematic ordering. A contribution of a local
alignment is not taken into account. A consequence of this ansatz is that a possible
orientation is negligibly small if χ > χs and ω = 0. Therefore the orientation tensor
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is neglected in the part of the phase diagram in which ω < ωs. If ω > ωs and χ > χs

the smectic state becomes possible in which only a global orientation is taken into
account.

However, in [12, 13] and this thesis a possible local alignment has not been ex-
cluded. In this way the orientation plays a more important role in the phase behaviour.
In the numerical results in section 3.6 a smectic A- and -C state is also found if there
is no Maier-Saupe interaction. This interaction does not only influence the nematic
and smectic part of the phase diagram but also changes the domain of the hexago-
nal and bcc phase. In section 3.3 it is explained how such a local orientation can
be described in a smectic phase and in a more complicated microphase such as the
hexagonal phase. In section 3.2 the general Landau free energy derived in chapter 2 is
applied to a melt of monodisperse semi-flexible diblock copolymers. The minimum
of the free energy with respect to the order-parameters is determined analytically.

3.2 Minimizing the Landau free energy of a melt of monodis-
perse semi-flexible diblock copolymers

For a melt of polydisperse multiblock copolymers the expression of the Landau free
energy has been derived in the previous chapter. In this section the expression of
a this general melt is applied to a melt of monodisperse diblocks. The minimum
with respect to the order parameters is determined analytically. In the next section
it is explained how the orientation of A- and B-blocks can be described in several
classical microphase structures.

Below the spinodal χ < χs the melt is in the isotropic state. When χ is increas-
ing a phase transition is taking place at the the spinodal. A certain microphase is
formed when χ is further increased. In a microphase structure besides a scalar order-
parameter there is also a certain amount of nematic ordering possible because of
the bending stiffness of the chains. In the first harmonics approximation the Fourier

transformed scalar order-parameter Ψa and the orientation tensor Υa =
Qµν
α (−q)

V have
the following form according to [12],

Ψa = ΨA(q) = −ΨB(q) = Ψ(q) = Ψ
∑

q′∈H

exp(iϕq′)δ(q − q′) (3.1)
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and

Υa = Υ
µν
α (q) = Υα(nµαnνα −

1
3
δµν)

∑

q′∈H

exp(iϕq′)δ(q − q′)+

Υ0
α(nµαnνα −

1
3
δµν)δ(q). (3.2)

Besides a local orientation a possible contribution of a global orientation is also taken
into account in Eq. (3.2). In Υa the vector nµ1 is a unit vector which is the director
of the orientation of block α. If the orientation of the A- and B-block are different
each semi-flexible chain must be bent over a certain angle. In the derivation of the
single-chain correlation function in Appendix A the tangent vectors of the A- and B-
block at the connection point have been taken equal. So the A- and B-block cannot be
rotated freely with respect to each other. Therefore it is energetically not favourable
that there are two different orientations. It is then justified to assume that in Eq.(3.2)
the directors nµA and nµB are equal, nµA = nµB = nµ.

In the nematic and smectic state the first harmonics approximation according to
Eq. (3.2) can be applied, but it is not possible in the hexagonal and bcc structure. The
orientation of nematic and smectic state is described by a constant director nα(x) = n
in Eq. (3.18), but in the hexagonal and bcc state it must be spatially dependent. In the
next section this spatially dependent director nα(x) is chosen such that the orientation
tensors Qα

hex
(q) and Qα

bcc
(q) can be written as a linear combination of smectic-A states

with different directors nm,

Qα

hex
(q) =

1
3

3∑

m=1

Qα

smecA
(q, nm) (3.3)

and

Qα

bcc
(q) =

1
6

6∑

m=1

Qα

smecA
(q, nm), (3.4)

in which Υa =
Qµν
α (−q)

V . In this way the orientation tensor is invariant under the sym-
metry operations belonging to the corresponding microphase structure.
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In the Landau free energy,

FL

V
= min

Ψ,Υ
{(Γ(2)

ab − χ̃ab)ΨaΨb + 2Γ
(2)
ab

ΨaΥb+

(Γ(2)
ab
− 1

2
ωab)ΥaΥb − 1

3
ωabΥa,i jδi j(Ψb + f b)+

Γ
(3)
abcΨ

aΨbΨc + 3Γ
(3)
abcΨ

aΨbΥc + 3Γ
(3)
abc

ΨaΥbΥc + Γ
(3)
abc

ΥaΥbΥc+

Γ
(4)
abcdΨaΨbΨcΨd + 4Γ

(4)
abcd

ΨaΨbΨcΥd + 6Γ
(4)
abcd

ΨaΨbΥcΥd+

4Γ
(4)
abcd

ΨaΥbΥcΥd + Γ
(4)
abcd

ΥaΥbΥcΥd}, (3.5)

the first harmonics approximation according to Eq. (3.1) and (3.2) is applied to the
order-parameters. The free energy is written as a power series expansion of the vector

(Ψ,ΥA,ΥB,Υ
0
A,Υ

0
B). In the second order term

F(2)
L
V there is no coupling between the

global and local order-parameters so that it can be written in the following form,

F(2)
L

V
=

[
Ψ ΥA ΥB

]


Γ̃(2) − χ Γ̃
(2)
A Γ̃

(2)
B

Γ̃
(2)
A Γ̃

(2)
AA − 1

3ωAA Γ̃
(2)
AB − 1

3ωAB

Γ̃
(2)
B Γ̃

(2)
AB − 1

3ωAB Γ̃
(2)
BB − 1

3ωBB





Ψ

ΥA

ΥB

 +

[
Υ0

A Υ0
B

] 
Γ̃

(2)
AA,00 − 1

3ωAA Γ̃
(2)
AB,00 − 1

3ωAB

Γ̃
(2)
AB,00 − 1

3ωAB Γ̃
(2)
BB,00 − 1

3ωBB




Υ0
A

Υ0
B

 , (3.6)

in which the following notation

Γ̃(2) = Γ
(2)
ab S aS b, Γ̃

(2)
α = Γ

(2)
ab

S adb
α

Γ̃
(2)
αβ = Γ

(2)
ab

da
αdb

β and Γ̃
(2)
αβ,00 = Γ

(2)
ab

da
α,0db

β,0, (3.7)

S a ≡ (1 − 2δαB) exp(iϕq) = ± exp(iϕq) and a = q, α (3.8)

and
db
α = db

α,0 ≡ (nµ2
β nν2

β −
1
3
δµ2ν2) exp(iϕq)δαβ and b = q, β, µ2ν2 (3.9)

is used.
The 3×3 matrix in the second order term is symmetric, so it has real eigenvalues.

In general the eigenvalues λ1, λ2 and λ3 of this matrix are different. λ1 is the lowest
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eigenvalue which becomes negative if χ > χs(q∗) or ωαβ > ωαβ,s = ωαβ,s(q∗) in
which the wave number q∗ is nonzero. The wave number q∗ in the 2×2 matrix in Eq.
(3.6) is zero and the two eigenvalues of this matrix are denoted as λ10 and λ20. The
smallest eigenvalue λ10 becomes negative if ωαβ > ωαβ,s = ωαβ,s(q∗ = 0). Exactly at
χ = χs the eigenvalue λ1 is zero so that the determinant of 3×3 matrix in Eq. (3.6) is
zero. From this determinant the spinodal χs can be easily derived which is given by,

χs = min
q∗
{̃Γ(2)− (̃Γ(2)

B )2(̃Γ(2)
AA − 1

3ωAA) + (̃Γ(2)
A )2(̃Γ(2)

BB − 1
3ωBB) − 2Γ̃

(2)
A Γ̃

(2)
B (̃Γ(2)

AB − 1
3ωAB)

(̃Γ(2)
AA − 1

3ωAA)(̃Γ(2)
BB − 1

3ωBB) − (̃Γ(2)
AB − 1

3ωAB)2
}.

(3.10)
This expression of χs can also be used to calculate the spinodals ωαβ,s(q∗) in which
the wave number q∗ is the same as in χs = χs(q∗). In the same way the 2×2 matrix in
Eq. (3.6) is used to determine the spinodals ωαβ,s = ωαβ,s(q∗ = 0).

In this section we consider the free energy of a microphase in which λ1 is nega-
tive and the other eigenvalues λ2, λ3, λ10 and λ20 are still positive. Then the primary
eigenvector x1 which belongs to λ1 is nonzero at the minimum of the free energy. The
secondary eigenvectors x2, x3, x10 and x20 belonging to λ2, λ3, λ10 and λ20, respec-
tively, may also become nonzero. These vectors are induced by third and higher order
terms in the free energy in which x1 is coupled to the secondary eigenvectors. The
directions of the eigenvectors can be determined by the 3×3 matrix and 2×2 matrix
in Eq. (3.6). If we know the directions of x1, x2, x3, x10 and x20 it is only necessary
to write the Landau free energy as a power series expansion in x1 = ±|x1|, x2 = ±|x2|,
x3 = ±|x3|, x10 = ±|x10| and x20 = ±|x20|,

FL

V
= min
{x1,x2,x3,x10,x20}

{λ1x2
1 + λ2x2

2 + λ3x2
3 + λ10x2

10 + λ20x2
20+

C(3)
111x3

1 + C(3)
112x2

1x2 + ...C(4)
1111x4

1 + ...}. (3.11)

In the power series expansion fifth and higher order terms are not taken into account.
The normalized eigenvectors x̂n = (Ψ̂n, Υ̂

A
n , Υ̂

B
n ) with n = 1, 2, 3, 10 or 20 are used to

determine the C−coefficients in Eq. (3.11). For example C(3)
112 and C(3)

11,20 are given by

C(3)
112 = Γ̃

(3)
αβγΥ̂

α
1 Υ̂

β
1Υ̂

γ
2 + Γ̃

(3)
αβΥ̂α

1 Υ̂
β
1Ψ̂2 + 2Γ̃

(3)
αβΥ̂α

1 Υ̂
β
2Ψ̂1+

Γ̃
(3)
α Υ̂α

2 Ψ̂2
1 + 2Γ̃

(3)
α Υ̂α

1 Ψ̂1Ψ̂2 + Γ̃(3)Ψ̂2
1Ψ̂2 (3.12a)

and

C(3)
11,20 = Γ̃

(3)
αβγΥ̂

α
1 Υ̂

β
1Υ̂

γ
20 + 2Γ̃

(3)
αβΥ̂α

1 Υ̂
β
20Ψ̂1 + Γ̃

(3)
α Υ̂α

20Ψ̂2
1. (3.12b)
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The third order Γ̃’s in this example are expressed in a similar way as the second
order Γ̃’s in Eq. (3.6). The free energy has to be minimized with respect to x1, x2,
x3, x10 and x20. First the free energy is minimized with respect to the secondary
parameters x2, x3, x10 and x20 at an arbitrary value of the primary parameter x1. In
this way the secondary parameters can be expressed as a power series expansion in
x1. Substituting these expressions in Eq. (3.11) yields the free energy as a function of
only one parameter x1. The first order partial derivative of FL with respect to x2, x3,
x10 and x20 must be equal to zero which yields four equations with four unknowns,

1
V
∂FL

∂xn
= 2λnxn + C(3)

11nx2
1 + ... = 0 with n = 2, 3, 10 or 20. (3.13)

In the solutions the third and higher order terms in x1 can be neglected, because when
these are substituted in FL this yields fifth and higher order terms. These terms are
not taken into account. The solutions xn with n = 2, 3, 10 or 20 does not contain
linear terms and are given by,

xn =
−C(3)

11nx2
1

2λn
+ O(x3

1). (3.14)

When x2, x3, x10 and x20 are substituted, FL
V becomes,

FL

V
= min

x1
{λ1x2

1 + C(3)
111x3

1 + (C(4)
1111 −

∑

n,1

(C(3)
11n)2

4λn
)x4

1} =

min
x1
{λ1x2

1 + C(3)
111x3

1 + C̃(4)
1111x4

1}. (3.15)

At the minimum x1 is

x1 =
−3C(3)

111 ±
√

9(C(3)
111)2 − 32λ1C̃(4)

1111

8C̃(4)
1111

. (3.16)

3.3 Description of a spatially dependent orientation in a mi-
crophase

In the previous section besides a global orientation of A- and B-blocks a possible
spatially dependent orientation is also taken into account in the Landau free energy.
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Such a local orientation becomes possible in a microphase. The first harmonics ap-
proximation according to [12] given by Eq. (3.2) can only be applied to a nematic
or smectic state. In this section it will be explained how an orientation tensor can
be constructed such that it can also be applied to the hexagonal and bcc state. The
orientation tensor is transformed back in real space and applied to the smectic-A and
hexagonal state in Fig. (3.2) till (3.9). In these figures the orientation strength and
direction of A- and B-blocks are displayed in a certain domain in the real space.

The definition of the microscopic orientation tensor Q̂
α
(x) of block α is given by,

Q̂
α
(x) ≡

∑

sm

∫ Ls

0
dlσαs (l) (us

m(l) us
m(l) − 1

3
I)δ(x − Rs

m(l)). (3.17)

The macroscopic orientation tensor Qα(x) in real space is written in the following
form,

Qα(x) =

〈
Q̂
α
(x)

〉
= Qα(x)(nα(x)nα(x) − 1

3
I). (3.18)

In this form the unit vector nα(x) is the local director of block α. The scalar Qα(x) can
be regarded as the strength of the alignment of the α-monomers along the director
nα(x). This becomes clear if we choose the coordinate system such that a certain
monomer k of kind α is fixed at Rk,α. If ∆V is a volume element around Rk,α, then

Qα(Rk,α) = lim
∆V→0

1
∆V

∫

∆V
d3xQα(x) =

3
2

lim
∆V→0

1
∆V

∫

∆V
d3xnα,µ(x)nα,ν(x)

〈
Q̂α
µν(x)

〉
,

(3.19)
according to Eq. (3.18). Inserting the definition of Q̂(x) in Eq. (3.19) yields

Qα(Rk,α) =
3
2

lim
∆V→0

1
∆V

∫

∆V
d3x

〈∑

sm

∫ Ls

0
dlσαs (l)

(
(nα(x) · us

m(l))2 − 1
3

)
δ(x − Rs

m(l))
〉
.

(3.20)
The delta function cancels out all contributions of monomers which are outside ∆V .
Because ∆V → 0, the number of monomers inside ∆V becomes smaller and if ∆V
is small enough only the monomer k of kind α at Rk,α remains. Then Eq. (3.20)
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becomes,

Qα(Rk,α) =
3
2

lim
∆V→0

1
∆V

∫

∆V
d3x

〈(
(nα(Rk,α) · uk,α)2 − 1

3

)
δ(x − Rk,α)

〉
=

3
2

〈
(nα(Rk,α) · uk,α)2 − 1

3

〉
lim

∆V→0

1
∆V

∫

∆V
d3xδ(x − Rk,α) =

3
2

〈
(nα(Rk,α) · uk,α)2 − 1

3

〉
ρα(Rk,α). (3.21)

In this form we see that Qα(Rk,α) is zero if the direction of uk,α is completely arbitrary
on average. A positive alignment strength Qα(Rk,α) means that the monomer prefers
to be aligned parallel to the director. At the maximum alignment Qα(Rk,α) = ρα(Rk,α)
the monomer at Rk,α is perfectly oriented parallel to the director. A negative align-
ment strength can be regarded as a stronger orientation perpendicular to nα(Rk,α).

The orientation in the nematic and smectic state can be described by a space
independent director nα(x) = nα in Eq. (3.18). Then the form of Eq. (3.18) is in
agreement with Eq. (3.2) which is transformed back in real space. However, in the
hexagonal and bcc state Eq. (3.2) cannot be applied, because there is more than
one direction at which the A- and B-blocks prefer to be oriented. Therefore the
orientation in these structures cannot be described by means of one constant director
nα. A simple way to express the director nα(x) of the hexagonal state is to divide the
melt into domains at which nα(x) is locally constant. Such director field has been
drawn in Fig. (3.1). In this figure the dots are the points at which the density of
α-monomers is maximal. Each line connects a maximum with one of the six nearest
points at which the density of α-monomers is minimal. Fig. (3.1) can be applied to
both the hexagonal state with α-rich cylinders and the reverse state with an α-rich
matrix. The local directors n1, n2 and n3 are chosen parallel to the set of wave vectors
Hhex = {±q

1
,±q

2
,±q

3
} in Ψ(q) given by Eq. (3.1). The domains at which nα(x) = n1,

n2 and n3 are denoted as V1k, V2k and V3k, respectively. In this notation k is a certain
integer. So nα(x) can be expressed as,

nα(x) =



n1 if x ∈ V1k

n2 if x ∈ V2k

n3 if x ∈ V3k

. (3.22)

The orientation strength Qα(x) in Eq. (3.18) can also be divided into the domains
V1k, V2k and V3k,

Qα(x) = Qα
j (x) if x ∈ V jk, (3.23)
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Figure 3.1: Director field in the hexagonal phase

in which j = 1,2 or 3. The director and orientation strength given by Eq. (3.22) and
(3.23) are inserted in Eq. (3.18) to calculate the Fourier transform of the orientation
tensor Qα(x). In the Fourier transform the integral over the whole space is written as
a summation of integrals over the domains V jk,

Qα(q) =
1
V

∑

j,k

∫

V jk

d3x exp(iq · x)Qα(x) =

1
V

∑

j,k

∫

V jk

d3x exp(iq · x)Qα(x)(nα(x)nα(x) − 1
3

I) =

1
V

∑

j

(n jn j −
1
3

I)
∑

k

∫

V jk

d3x exp(iq · x)Qα
j (x). (3.24)

The orientation strength Qα
j (x) must be chosen such that the tensor Qα(x) maintains

the symmetry properties of the hexagonal structure. In each domain V jk we may
assume that there is a local smectic-A state with director n j. So a possible choice of
Qα

j (x) is,

Qα
j (x) = Qα

smecA(x, n j) if x ∈ V jk, (3.25)

which is inserted in Eq.(3.24). If Qα
smecA(x, n j) is written as a Fourier series, Eq.(3.24)
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becomes,

Qα(q) =
∑

j

(n jn j −
1
3

I)
∑

q′
Qα

smecA(q′, n j)
1
V

∑

k

∫

V jk

d3x exp(i(q + q′) · x). (3.26)

In Eq. (3.26) the integral,

I j =
1
V

∑

k

∫

V jk

d3x exp(i(q + q′) · x) (3.27)

is restricted to the domains V jk belonging to the same director index j. These domains
occupy 1

3 of the whole space. In appendix C it has been proven that

I j =
1
3
δ(q + q′), (3.28)

if q and q′ are restricted to the set H = Hhex ∪ Hnem in which Hnem = {0} and
Hhex = {±q∗n1,±q∗n2,±q∗n3}. So if q and q′ ∈ H Eq. (3.26) can be written as,

Qα(q) =
1
3

∑

j

(n jn j −
1
3

I)
∑

q′
Qα

smecA(q′, n j)δ(q + q′). (3.29)

In the smectic-A state it is allowed to apply to first harmonics approximation accord-
ing to Eq. (3.2) in which q′ belongs to the set H j

smecA = {±q
smecA

} = {±q∗n j} at a
certain j. In Eq. (3.29) we see that the orientation tensor of the hexagonal phase
Qα

hex
(q) is the average of three smectic A phases,

Qα

hex
(q) =

1
3

3∑

j=1

Qα

smecA
(q, n j) (3.30)

In the same way it can be derived that the orientation tensor Qα

bcc
(q) of the bcc phase

can be expressed as the average of six smectic-A phases,

Qα

bcc
(q) =

1
6

6∑

j=1

Qα

smecA
(q, n j). (3.31)

The phase factors exp(iϕq′) in Eq. (3.2) and local directors n j in the orientation
tensors Qα

hex
(q) and Qα

bcc
(q) are chosen such that the symmetry properties of the mi-

crophase structure are maintained. The orientation tensors Qα

hex
(q) and Qα

bcc
(q) con-

tain only contributions of smectic-A states. Contributions of smectic-C states could
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also be possible, but these contributions are not taken into account. Very close to
the spinodal χs nonzero angles θ are not possible, because then the lowest eigenvalue
λ1 = λ1(θ) in the second order term of the Landau free energy becomes positive.
Then it is less probable that a microphase contains contributions in which θ , 0.
Only at a greater χ negative eigenvalues λ1(θ) with nonzero θ are possible. Maybe
then a hexagonal or bcc state with a nonzero angle θ could be possible. This has not
been investigated. The phase diagram is calculated in the neighbourhood of the phase
transition point at which the mean field approximation is most reliable. Close to this
point it is justified to assume that θ can only be zero in the hexagonal and bcc phase.

In this section the orientation of A- and B-blocks Υ
µν
α (x) = Qµν

α (x)/V in the
smectic-A and hexagonal phase is calculated in real space to see how the chains
are oriented. In the smectic-A phase the two wave vectors are chosen parallel to the
x-axis,

q = ±q∗



1

0

0

 . (3.32)

In this phase the elements of the tensor Υ
µν
α (x) and the scalar order-parameter Ψ(x)

are,

Υxx
α (x) =

Υα

V
4
3

cos(q∗x), (3.33a)

Υ
yy
α (x) = Υzz

α (x) = −Υα

V
2
3

cos(q∗x), (3.33b)

Υ
i j
α (x) = 0 if i , j and i, j = x, y, z (3.33c)

and

Ψ(x) = 2
Ψ

V
cos(q∗x). (3.33d)

In the hexagonal phase the z-axis is chosen parallel to the cylinders. The wave vectors
are in the xy-plane and are given by,

q = ±q∗



1

0

0

 ,±
1
2

q∗



1

−√3

0


and ± 1

2
q∗



1√
3

0


. (3.34)

In real space in the hexagonal phase the elements of the tensor Υ
µν
α (x) and the scalar
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order-parameter Ψ(x) are,

Υxx
α (x) =

Υα

V
4
3

cos(q∗x) − Υα

V
1
3

cos(
q∗
2

x) cos(
q∗
2

√
3y), (3.35a)

Υ
yy
α (x) = −Υα

V
2
3

cos(q∗x) +
Υα

V
5
3

cos(
q∗
2

x) cos(
q∗
2

√
3y), (3.35b)

Υzz
α (x) = −Υα

V
2
3

cos(q∗x) − Υα

V
4
3

cos(
q∗
2

x) cos(
q∗
2

√
3y), (3.35c)

Υ
xy
α (x) = Υ

yx
α (x) = −Υα

V

√
3 sin(

q∗
2

x) sin(
q∗
2

√
3y), (3.35d)

Υ
yz
α (x) = Υ

zy
α (x) = Υxz

α (x) = Υzx
α (x) = 0 (3.35e)

and

Ψ(x) = 2
Ψ

V
cos(q∗x) + 4

Ψ

V
cos(

q∗
2

x) cos(
q∗
2

√
3y) ∼ Υzz

α (x). (3.35f)

The tensors Υxx
α , Υ

yy
α , Υ

xy
α and Υ

yx
α = Υ

xy
α in the xy-plane form a symmetric matrix

M
α
,

M
α

=


Υxx
α Υ

xy
α

Υ
xy
α Υ

yy
α

 , (3.36)

which has two real eigenvalues and eigenvectors given by

λ±α =
1
2

(Υxx
α + Υ

yy
α ) ± 1

2

√
(Υxx

α − Υ
yy
α )2 + 4(Υxy

α )2 (3.37)

and

ê±α =
1√

(Υxy
α )2 + (Υxx

α − λ±)2


−Υ

xy
α

Υxx
α − λ±α

 . (3.38)

The eigenvectors ê+
α and ê−α form an alternative coördinate system at every point (x, y)

in the xy-plane. If ê+
α = êx′

α and ê−α = êy
′
α , then the eigenvalues λ+

α and λ−α are exactly
equal to the orientation tensors Υx′x′

α and Υ
y′y′
α , respectively. This can be easily veri-

fied by means of the definition of the microscopic orientation tensor Q̂
α
(x) given by

Eq. (3.17). So the eigenvalue is a measure of how strong the α-monomer is oriented
along the corresponding eigenvector. If the eigenvalue is negative the orientation is
weak in the corresponding direction. A positive eigenvalue means that the orientation
is strong. If the eigenvalue is zero the orientation is the same as the orientation in an
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isotropic melt. Because Υxx
α + Υ

yy
α = −Υzz

α , the eigenvalues of M
α

can also be written
as

λ±α = −1
2

Υzz
α ±

1
2

√
(Υzz

α )2 − 4 det M
α

= −1
2

Υzz
α ±

1
2

√
(Υzz

α )2 − 4λ+
αλ
−
α . (3.39)

In this form we see that,

λ+
α − λ−α =

√
(Υzz

α )2 − 4λ+
αλ
−
α = 0 (3.40)

and

λ+
α + λ−α + Υzz

α = 0. (3.41)

Because λ+
α = λ

−
α , the α-monomers prefer to be oriented along ê+

α in the xy-plane.
In Fig. (3.2), (3.3) and (3.4) the density order-parameter Ψ(x) and the eigenvec-

tors ê+
α and ê−α of the hexagonal phase are calculated in the xy-plane. These figures

have been made universal such these can be applied to every A-block fraction fA,
chain length L and persistence lengths λA and λB. The figures corresponds to one of
the eigenvectors x̂n = (Ψ̂n, Υ̂A,n, Υ̂B,n) with n = 1, 2 and 3. The amplitude Ψ

V of the
scalar order-parameter in Eq. (3.35f) is taken equal to one. Along the horizontal and
vertical axis q∗x and q∗y are plotted from 0 to 6π, respectively. x and y are multiplied
by q∗ to remove q∗-dependence. In this way the dependence of the parameters fA, L,
λA and λB have been removed. Only the signs of Ψ̂n, Υ̂A,n and Υ̂B,n with respect to
each other may become different if the fraction fA or persistence length λA or λB is
changed. In Fig. (3.3) and (3.4) ê+

α and ê−α have been drawn, respectively, in which
the amplitude Υα

V in Eq. (3.35a) till (3.35e) has been taken equal to +1 or −1. If
Υα

V = +1, the vector fields in Fig. (3.3) and (3.4) corresponds to ê+
α and ê−α , respec-

tively and if Υα

V = −1 the fields ê+
α and ê−α are reversed. In Fig. (3.2) in the darkest

red parts there are maxima and the darkest blue parts are minima. The scalar order-
parameter is chosen such that Ψ(x) = ΨA(x) and Ψ(x) = −ΨB(x). So the maxima
and minima correspond to A-rich and B-rich domains, respectively. In the hexago-
nal phase displayed by Fig. (3.2) the cylinders are A-rich domains. In the reverse
state there are more A-blocks outside the cylinders. This reverse state is completely
analogeous to the state in Fig. (3.2) and need not to be considered separately.

In Eq. (3.35c) and (3.35f) we see that Ψ(x) is proportional to Υzz
α (x). The ampli-

tudes Ψ
V and Υα

V in the expressions of Ψ(x) and Υzz
α (x) have either the same sign or

different signs. According to Eq. (3.35c) and (3.35f) Ψ(x) and Υzz
α (x) have the same

sign if Ψ
V and Υα

V have different signs. In that case if α = A the component Υzz
A (x)
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Figure 3.2: Scalar order-
parameter Ψ(x) in the hexago-
nal phase

Figure 3.3: Field of eigenvec-
tor ê+

α of the hexagonal phase

Figure 3.4: Field of eigenvec-
tor ê−α of the hexagonal phase

Figure 3.5: Eigenvalue differ-
ence λ+

α − λ−α of the hexagonal
phase
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is positive in an A-rich cylinder which means that the A-blocks prefer to be oriented
along the axis of the cylinder. In the B-rich matrix Υzz

α (x) is negative so that the A-
blocks are stronger oriented parallel to the xy−plane perpendicular to the cylinders.
If the signs of Ψ

V and Υα

V are equal the reverse is taking place. Then the A-blocks are
oriented along the z-axis outside the cylinders and inside the arrangement is parallel
to the xy-plane.

The orientation in the xy-plane is measured with respect to the vectors ê+
α and

ê−α which are drawn in Fig. (3.3) and (3.4), respectively at the points (x, y). The
ranging and scaling of the x- and y-axis is the same as in Fig. (3.2). In Fig. (3.3)
we see that the vectors ê+

α are pointing towards or away from the closest axis of a
cylinder. The vectors ê−α are perpendicular to the vectors ê+

α and therefore in Fig.
(3.4) the vectors ê−α are pointing around the closest cylinder axis. The eigenvalues
λ+
α and λ−α are a measure of orientation strength along ê+

α and ê−α . In Fig. (3.5) the
difference λ+

α − λ−α is plotted in the xy-plane in the same way as Fig. (3.2), (3.3) and
(3.4). This difference is always positive or zero according to Eq. (3.40). In the most
red parts in the figure λ+

α − λ−α is maximum and in that domain the A-blocks prefer
to be oriented along ê+

α . The red parts are positioned between two cylinders. In the
most blue domains the difference is very small and is zero in the centre. These blue
parts are positioned exactly at an A- or B-rich domain. In the points at which Ψ(x)
is maximum or minimum different orientation directions in the xy-plane are crossing
each other. So the orientation in the xy-plane is random at the maxima and minima.
This explains why the difference λ+

α − λ−α becomes zero. A small difference does
not mean that the total orientation in the xy-plane is weak. In the centre of an A- or
B-rich domain Υzz

α (x) is negative which means that the alignment in the z-direction is
weak. Because the tensor Υ

µν
α is trace less, the total orientation Υxx

α (x) + Υ
yy
α (x) in the

xy-plane must be positive. Exactly in the centre of an A- or B-rich domain λ+
α = λ−α

so that Υxx
α (x) = Υ

yy
α (x). In that point the orientation in the xy-plane is maximal, but

there is no preferred direction.
From the numerical calculations it appears that in the neighbourhood of the phase

transition point in the phase diagram the longest block has always the greatest per-
sistence length. So if LA > LB, then λA > λB. At the same time in the primary
eigenvector x1 = (Ψ1,ΥA,1,ΥB,1) the signs of ΥA,1 and ΥB,1 are equal and Ψ1 has a
different sign, so

x1 = (Ψ1,ΥA,1,ΥB,1) = (±|Ψ1|,∓|ΥA,1|,∓|ΥB,1|). (3.42)

In the neighbourhood of the phase transition point the total density and orientation
parameters Ψ, ΥA and ΥB are mainly determined by the primary eigenvectors, Ψ1 ≈
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Ψ, ΥA,1 ≈ ΥA and ΥB,1 ≈ ΥB. The contributions of the secondary eigenvectors can
be neglected. In this way we can predict how the A- and B-blocks are oriented close
to the phase transition point. For example in the hexagonal phase in Fig. (3.2) the
amplitude Ψ have been chosen positive, so that the amplitudes ΥA and ΥB are negative
according to Eq. (3.42). Therefore in the xy-plane the A- and B-blocks prefer to be
oriented according to Fig. (3.3). Because ΥA < 0 and ΥB < 0 the orientation Υzz

α (x)
given by Eq.(3.35c) is positive in an A-rich cylinder in Fig. (3.2). Here the A- and
B-blocks are stronger aligned along the axis of the cylinder. Outside the cylinders
the orientation of diblocks is stronger parallel to the xy-plane. In the reverse state the
B-blocks form cylinders in an A-rich matrix. Here the diblocks are aligned along the
z-axis in the A-rich matrix and inside the cylinders the orientation is perpendicular to
the z-axis. In the xy-plane the chains are still oriented according to Fig. (3.3).

In the limit λA ↓ λB the phase transition point in the phase diagram is reached
when LA ↓ LB and the primary eigenvector x1 is not given by Eq. (3.42). The sign of
ΥB

1 has changed, so that

x1 = (Ψ1,ΥA,1,ΥB,1) = (±|Ψ1|,∓|ΥA,1|,±|ΥB,1|). (3.43)

A consequence is that the A- and B-blocks are oriented perpendicular to each other.
For example in the hexagonal phase the orientation of B-blocks in the xy-plane is dis-
played in Fig. (3.4) instead of Fig. (3.3). Additionally, when the B-blocks are aligned
parallel to the z-axis, the A-blocks are always oriented in the xy-plane irrespective if
λA ↓ λB or λB ↓ λA.

The smectic-A state has been investigated in the same way. In Fig. (3.6), (3.7),
(3.8) and (3.9) Ψ(x), ê+

α , ê−α and the difference λ+
α − λ−α are calculated in the xy-plane

and Ψ
V = − Υα

V = 1 in Eq. (3.35a) till (3.35f). If Ψ
V =

Υα

V = 1 the vector fields are
reversed so that Fig. (3.7) and (3.8) correspond to ê−α and ê+

α , respectively. Because
λ+
α = λ

−
α according to Eq. (3.40), the A- or B-blocks prefer to be aligned along ê+

α .
Close to the phase transition point if Ψ > 0, then according to Eq. (3.42) and (3.43)
ΥA < 0. So in that case the A-blocks are oriented according to Fig. (3.7) with respect
to the xy-plane. In this figure the A-blocks in the B-rich layers are a little bit stronger
aligned parallel to the wave vector q but in the A-rich layers the alignment is some
stronger in the direction perpendicular to q. Such an orientation is possible if the
block length LA is longer than the size of a A-rich layer 1

2λ. It has been verified
numerically that if the A-block is stiffer than the B-block, λA > λB, or if λA = λB it
always follows that LA >

1
2λ in the neighbourhood of the phase transition point.
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Figure 3.6: Scalar order-
parameter Ψ(x) in the smectic-
A phase

Figure 3.7: Field of eigenvec-
tor ê+

α of the smectic-A phase

Figure 3.8: Field of eigenvec-
tor ê−α of the smectic-A phase

Figure 3.9: Eigenvalue differ-
ence λ+

α − λ−α of the smectic-A
phase
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3.4 Determination of the phase diagram

In the phase diagram the Flory-Huggins parameter χ multiplied by the chain length
L is plotted against the A-block fraction f . In each point ( f , χL) the most probable
state of the melt is determined. First the spinodal χsL is calculated for which an
expression is derived in this chapter. This expression depends on the second order
vertices Γ

(2)
ã̃b

which are written down in detail in terms of the second order single-chain
correlation functions Aã̃b in Appendix A. First the single-chain correlation functions
Aã̃b = Aã̃b(q

1
, q

2
) for the set q

1
= −q

2
= q are calculated. These correlation functions

can be used to determine the vertices Γ
(2)
ã̃b

= Γ
(2)
ã̃b

(q,−q). The wave number q and
director n are chosen as q = q∗̂ex and n = (cos θ, sin θ, 0) in the expression of the
spinodal which is minimized with respect to q∗ and θ. It has appeared that for every
system of di- and triblocks the orientation θ is θ = 0◦.

In a point ( f , χL) in the phase diagram in which χL > χsL a microphase struc-
ture is possible. In each point the free energy is calculated for both the smectic-A,
smectic-C, hexagonal and bcc phase by means of the expression,

FL

V
= min

x1
{λ1x2

1 + C(3)
111x3

1 + (C(4)
1111 −

∑

n,1

(C(3)
11n)2

4λn
)x4

1} =

min
x1
{λ1x2

1 + C(3)
111x3

1 + C̃(4)
1111x4

1}, (3.44)

derived in section 3.2. At the minimum x1 is

x1 =
−3C(3)

111 ±
√

9(C(3)
111)2 − 32λ1C̃(4)

1111

8C̃(4)
1111

. (3.45)

In the first harmonics approximation each phase is described by a set H of wave vec-
tors with the same magnitude q∗. These magnitude follows from minimization of the
spinodal χsL with respect to q∗. The coefficient or eigenvalue λ1 in the second order
term in Eq. (3.44) depends on the vertices Γ

(2)
ã̃b

= Γ
(2)
ã̃b

(q
1
, q

2
) in which q

1
and q

2
be-

long to the set H and q
1

+ q
2

= 0. In the smectic-A and -C phase H = {±q} = {±q∗̂ex}
and the two possible combinations q

1
= −q

2
= +q∗̂ex and q

1
= −q

2
= −q∗̂ex give the

same contribution c(2)(q,−q, θ) to λ1 because of symmetry, so λ1 = 2c(2)(q,−q, θ).
It can be easily explained that the same contribution c(2)(q,−q, θ) can be used to de-
termine λ1 in the hexagonal and bcc phase which are λ1 = 6c(2)(q,−q, θ = 0◦) and
12c(2)(q,−q, θ = 0◦), respectively.
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In the same way the third order coefficients C(3)
111 in Eq. (3.44) depend on the

vertices Γ
(3)
ã̃b̃c

= Γ
(3)
ã̃b̃c

(q
1
, q

2
, q

3
) in which q

1
, q

2
and q

3
belong to the set H and q

1
+

q
2

+ q
3

= 0. In the smectic-A and -C phase such triples are not possible so that

C(3)
111 = 0. In the hexagonal phase each triple gives the same contribution c(3) and

there are 2 × 3! = 12 combinations, so C(3)
111 = 12c(3). In the bcc phase C(3)

111 = 48c(3)

in which the contribution c(3) is the same as the one in the hexagonal phase. The other
third order coefficients C(3)

11n in Eq. (3.44) are calculated in a similar way.
The coefficient C(4)

1111 in Eq. (3.44) contains contributions of sets of four wave
vectors q

1
, q

2
, q

3
and q

4
belonging to the set H such that q

1
+ q

2
+ q

3
+ q

4
= 0. In

the smectic-A and -C phase six possible sets can be formed which are indicated by
the label A,

A = {q
i
· q

j
= ±q2

∗ | i, j = 1, 2, 3 or 4}. (3.46)

So if c(4)
A = c(4)

A (θ) is a contribution of one combination then C(4)
1111 = 6c(4)

A (θ) because
of symmetry. In the hexagonal and bcc phase the contributions of set A to C(4)

1111 are
18c(4)

A (θ = 0◦) and 36c(4)
A (θ = 0◦), respectively. Besides set A other sets B, C and D

are possible which are,

B = {q
i
· q

j
= −q2

∗ or ± 1
2

q2
∗ | i, j = 1, 2, 3 or 4}, (3.47)

C = {q
i
· q

j
= ±q2

∗ or 0 | i, j = 1, 2, 3 or 4} (3.48)

and

D = {q
i
· q

j
= −1

2
q2
∗ or 0 | i, j = 1, 2, 3 or 4}. (3.49)

If a contribution of one combination of set B, C or D is denoted by c(4)
B , c(4)

C or c(4)
D ,

respectively, then in the hexagonal phase C(4)
1111 contains an additional term 72c(4)

B and
in the bcc phase 288c(4)

B , 72c(4)
C and 144c(4)

D must be added.
To limit calculation time the fourth order single-chain correlation functions Cã̃b̃cd̃

for only one combination of set A, B, C and D are calculated. These are applied to
calculate the vertices Γ

(4)
ã̃b̃cd̃

for each set separately. The vertices Γ
(4)
ã̃b̃cd̃

belonging to a

certain set are used to calculate c(4)
A (θ), c(4)

B , c(4)
C or c(4)

D . The single-chain correlation
functions Cã̃b̃cd̃ and vertices Γ

(4)
ã̃b̃cd̃

of set A do not depend on the orientation angle θ of
the director n. A constant direction of the wave vector q is chosen and the direction

of n is varied. So Cã̃b̃cd̃ and Γ
(4)
ã̃b̃cd̃

do not have to be calculated for every orientation
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angle θ if the free energy of the smectic-C phase has to be minimized with respect to
θ.

The vertices Γ
(4)
ã̃b̃cd̃

also contain terms with products of two third order single-
chain correlation functions Bã̃b̃c. In these terms combinations are possible in which
Bã̃b̃c = Bã̃b̃c(q

1
, q

2
, q

3
) = Bã̃b̃c(q,−q, 0). Such combinations are ignored, because the

matrices M(1)
ã̃b

= M(1)
ã̃b

(q
1
, q

2
) are undefined when q

1
= q

2
= 0. In [6] similar terms

are found in the final form of the free energy given by Eq. (A60) in Appendix A. This
problem is also encountered when the spinodal ωsL = ωs,nemL is calculated which is
minimal at q∗ = 0. To solve this problem the limit q∗ → 0 is taken so that M(1)

ã̃b
is still

defined. In Eq. (3.44) a summation is carried out over n which labels contributions
of secondary eigenvectors with eigenvalues λn. In these terms when n = 10 or 20 the
limits lim

q∗→0
λn(q∗) and lim

q
3
→0

C(3)
11n(q

1
, q

2
, q

3
) = lim

q
3
→0

C(3)
11n(q,−q, q

3
) are taken to avoid

that in M(1)
ã̃b

the wave vectors become exactly zero. In the same way the free energy
of the nematic phase has been calculated in which it has appeared that the fourth
order term is always negative in the neighbourhood of the phase transition point in
both chapter 3 and 5. This follows from the fact that in both the bcc, hexagonal,
smectic-A and -C phase the coefficient C̃(4)

1111 in Eq. (3.44) is always negative when
the limit q∗ → 0 is taken.

The third order coefficients C(3)
111 and C(3)

11n in Eq. (3.44) are also calculated by
first calculating the single-chain correlation functions Bã̃b̃c and vertices Γ

(3)
ã̃b̃c

for one
combination q-vectors for which q

1
+ q

2
+ q

3
= 0. Because of symmetry it is not

necessary to calculate Bã̃b̃c and Γ
(3)
ã̃b̃c

for the other combinations.

To determine the phase diagram all vertices Γ
(2)
ã̃b

, Γ
(3)
ã̃b̃c

and Γ
(4)
ã̃b̃cd̃

have to be calcu-
lated at every A-block fraction f . These vertices do not depend on the Flory-Huggins
parameter χL, because q∗ has been determined by minimizing the spinodal χsL with
respect to q∗. The calculation of the vertices consumes most time due to the slowness
of the numerical integration carried out for each single-chain correlation function.
The implementation of the single-chain correlation functions in an algorithm is ex-
plained in detail in Appendix D. After the vertices at a certain f have been calculated
the free energy as a function of χL can be calculated quickly for every microphase
structure. At every point ( f , χL) the phase with lowest free energy is determined
which is the most probable state of the melt. The lines at which one phase is con-
verted into another phase are indicated in the phase diagram.
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3.5 Spinodal analysis of a melt of monodisperse semi-flexible
diblock copolymers

In this section we want to apply the theory in chapter 2 to investigate numerically the
spinodals χs and ωs of a simple melt of monodisperse semi-flexible diblock copoly-
mers. For simplicity the three different parameters ωAA, ωAB and ωBB have been
taken equal so that there is only one parameter ω. In a melt of diblocks only the
parameter χ̃AA in Eq. (2.21) is nonzero and will be denoted as χ. The first harmonics
approximation is applied to the scalar order-parameter Ψa and the orientation tensor
Υa,

Ψa = ΨA(q
1
) = −ΨB(q

1
) = Ψ(q

1
) = Ψ

∑

q∈H

exp(iϕq)δ(q
1
− q) (3.50)

and

Υa = Υ
µ1ν1
α (q

1
) = Υα(nµ1

α nν1
α −

1
3
δµ1ν1)

∑

q∈H

exp(iϕq)δ(q
1
− q). (3.51)

If there is microphase separation the order-parameters Ψa and Υa must contain the
same set H of wave vectors with the same length q∗. Then the symmetry of the mi-
crophase structure is conserved. However, the orientation tensor Υa may also contain
additional contributions in which q∗ = 0. These global terms must be chosen such
that they do not break the symmetry. So Υa must be written as

Υa = Υ
µ1ν1
α (q

1
) = Υα(nµ1

α nν1
α −

1
3
δµ1ν1)

∑

q∈H

exp(iϕq)δ(q
1
− q)+

Υ0
α(nµ1

α nν1
α −

1
3
δµ1ν1)δ(q

1
). (3.52)

In Υa the vector nµ1 is a unit vector which is the direction of the orientation of block
α. If the orientation of the A and B block are different each semi-flexible chain will
be bent. In the derivation of the single-chain correlation function in appendix A the
tangent vectors of the A and B block at the connection point have been taken equal.
So the A and B block cannot be bent freely with respect to each other. Therefore
it is energetically not favourable that the two blocks have different orientations. So
it is justified to assume that in Eq.(3.51) nµA = nµB = nµ. The orientation tensor
expressed by Eq. (3.52) contains only one orientation direction n. This form can



Monodisperse diblocks 51

only be applied to the nematic state or a smectic phase. The scalar order-parameter
Ψa and orientation tensor Υa in the hexagonal or bcc phase can be described by a
superposition of smectic phases with different directions

q
q∗ and n. The directions

q
q∗

and n must be chosen such that the hexagonal or bcc phase maintains its symmetry.
The expressions of the spinodals χs and ωs are derived by means of the second

order term of the general expression of the Landau free energy given by Eq. (2.21).
In the free energy both zero and nonzero modes q∗ may contribute. First we consider
contributions to the second order term in which q∗ , 0. These contributions occur
when there is microphase separation. A certain microphase can be described as a
superposition of smectic phases. Because of symmetry each pair of modes {−q, q}
corresponding to a certain smectic phase gives the same contribution. Such a contri-
bution can be written in the following matrix form,

F(2)
L (q∗ , 0)

V
=

[
Ψ ΥA ΥB

]


Γ̃(2) − χ Γ̃
(2)
A Γ̃

(2)
B

Γ̃
(2)
A Γ̃

(2)
AA − 1

3ω Γ̃
(2)
AB − 1

3ω

Γ̃
(2)
B Γ̃

(2)
AB − 1

3ω Γ̃
(2)
BB − 1

3ω





Ψ

ΥA

ΥB

 ,

(3.53)
using the first harmonics approximation of the order-parameters according to Eq.
(3.50) and (3.52). At χ < χs and ω < ωs the eigenvalues of the matrix are positive so
that the isotropic state is stable. At χ = χs or ω = ωs at least one of the eigenvalues
is zero and becomes negative if χ or ω is further increased. Then the isotropic state
becomes unstable. Because one of the eigenvalues is zero at χ = χs or ω = ωs, the
determinant of the matrix must be zero. In this way χs and ωs can easily be found,

χs = min
{q∗,n}
{̃Γ(2) − (̃Γ(2)

B )2(̃Γ(2)
AA − 1

3ω) + (̃Γ(2)
A )2(̃Γ(2)

BB − 1
3ω) − 2Γ̃

(2)
A Γ̃

(2)
B (̃Γ(2)

AB − 1
3ω)

(̃Γ(2)
AA − 1

3ω)(̃Γ(2)
BB − 1

3ω) − (̃Γ(2)
AB − 1

3ω)2
}

(3.54)

and

ωs = 3min
{q∗,n}
{ (̃Γ

(2) − χ)(̃Γ(2)
AAΓ̃

(2)
BB − (̃Γ(2)

AB)2) − (̃Γ(2)
A )2Γ̃

(2)
BB + 2Γ̃

(2)
A Γ̃

(2)
B Γ̃

(2)
AB − (̃Γ(2)

B )2Γ̃
(2)
AA

(̃Γ(2) − χ)(̃Γ(2)
AA + Γ̃

(2)
BB − 2Γ̃

(2)
AB) − (̃Γ(2)

A − Γ̃
(2)
B )2

}.

(3.55)

In these equations χs and ωs are minimized with respect to q∗ and n. From the
numerical calculations it followed that the orientation direction n is always equal to
the direction of the wave vector q, so n =

q
q∗ . In a certain microphase the mode
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q∗ = 0 may also contribute. In the smectic state this mode gives one contribution to
the second order term which is given by,

F(2)
L (q∗ = 0)

V
=

[
Υ0

A Υ0
B

] 
Γ̃

(2)
AA − 1

3ω Γ̃
(2)
AB − 1

3ω

Γ̃
(2)
AB − 1

3ω Γ̃
(2)
BB − 1

3ω




Υ0
A

Υ0
B

 . (3.56)

In other microphases there are more contributions given by Eq. (3.56), because these
are superpositions of smectic phases. Each contribution is the same because of sym-
metry. The eigenvalues of the matrix are positive if there is microphase phase separa-
tion. The third and fourth order terms in the Landau free energy may induce nonzero
amplitudes Υ0

A and Υ0
B. In that case the global part of the orientation tensor Υa is

a secondary order-parameter. This global part is a primary order-parameter in the
nematic state. Then at least one of the eigenvalues is negative when ω is greater than
the spinodal ωs. In third and higher order terms of the free energy the amplitudes Υ0

A
and Υ0

B may also induce secondary order parameters for which q∗ , 0. The spinodal
ωs calculated from Eq. (3.56) is identical to the spinodal ωs in Eq. (3.55) in the limit
q∗ → 0.

In the following figures below χsL and ωsL are investigated with the help of Eq.
(3.54) and (3.55). In Fig. (3.10), (3.11) and (3.12) the spinodal χsL is plotted as a
function of f = LA/L. In Fig. (3.10) the effective persistence length of the A- and
B-block are equal, λA/LA = λB/LB. If λA/LA = 10−4 the chain can be regarded as
flexible and if λA/LA = 102 the chain is very stiff such that it is approximately a rigid
rod. We see that the spinodal decreases when the persistence length increases. This
is expected because of a smaller entropy loss of stiff diblocks in the phase transition
to an inhomogeneous state. In Fig. (3.11) the A- and B-blocks have a different ef-
fective persistence length so that the spinodal is asymmetric. The A-block is stiff
and the B-block has different values for the bending stiffness. In Fig. (3.12) the B-
block is flexible and the bending stiffness of the A-block is varied. In the left part
of Fig. (3.12) we see that the spinodal has the lowest value at λA/LA = 10−4 and
is first increasing for greater values of the bending stiffness. This is in contrast with
Fig. (3.10). The wave number q∗ at the left side of Fig. (3.12) has a larger value
when λA/LA = 10−4. q∗ becomes smaller when λA/LA increases. So when the A-
block is flexible the A-rich domains in the microphase are small. This is entropically
favourable. If the A-block becomes stiffer, the density of the A rich domains de-
creases. The A-rich domains must become greater and therefore a greater repulsion
χ is necessary. When the A-block is stiff enough this effect does not have a great
influence on the spinodal any more. At a certain point the spinodal decreases a little
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bit when the stiffness is further increased. A similar dependence of χsL on λA/LA can
be seen in Fig. (2) in [12].

In Fig. (3.13), (3.14), (3.15) and (3.16) the spinodal ωsL has been investigated.
In these figures ωsL is always minimal at q∗ = 0 so the melt is in the nematic state
when ω > ωs. In Fig. (3.13) the spinodal ωsL is plotted as a function of λA/LA on
logarithmic scale. In this figure λA/LA = λB/LB and f = 0.5. In the left part we see
thatωsL increases exponentially if the diblock becomes more and more flexible. So in
a melt of totally flexible chains nematic ordering is not possible, because ωsL → ∞.
When the diblock becomes stiffer, in the right part of the figure ωsL converges to a
lower constant value. We expect this, because stiff diblocks loose a smaller amount
of entropy at the transition to the nematic state.

In Fig. (3.14) the spinodal ωsL is calculated as a function of f for different values
of the bending stiffness of the A-block. The bending stiffness of the A- and B-block
is again the same. Below the spinodal line at which λA/LA = 10−1 there are other
lines of stiffer diblock chains. The lines are converging quickly to the line where
λA/LA = 102. The spinodal lines are not constant with respect to f . Each line has a
maximum at f = 0.5. This can be explained by means of the intrinsic mixing entropy
of A- and B-monomers of each chain. At f = 0.5 each chain has a greater intrinsic
mixing entropy in the isotropic state. In the nematic state each chain has become
more straight so that the A- and B-monomers are more separated. This lowers the
intrinsic mixing entropy and therefore ωsL must be greater. In Fig. (3.15) ωsL is also
calculated as a function of f , but now the A-block is always stiff and the bending
stiffness of the B-block is varied. At f < 0.5 the B-block is longer and the B-block
has a smaller bending stiffness. This explains why the maxima of the spinodals are
shifted to the left. In Fig. (3.16) the spinodal ωsL has been plotted as a function of χL
in which the parameters of the diblock are f = 0.5, λA/LA = 102 and λB/LB = 10−4.
The line is truncated at χL = χsL, because at greater χL a microphase is formed
when ω = 0. At lower χL the minimum of ωsL is reached at q∗ = 0. This means
that the melt is in the nematic state when ω > ωs. ωsL does not depend on χ if
q∗ = 0, because the scalar order-parameter Ψ is zero. Therefore ωsL is constant at
lower χ in the figure. When χ becomes greater a second minimum of ωsL arises at
q∗ , 0. It becomes lower when χ is increased and a certain χ close to χs the two
minima are equal. In the right part of the figure in which ωsL is not constant the
second minimum is the lowest minimum. Then the melt is in the smectic-A state
if ω > ωs. ωsL is decreasing strongly because at a greater χ it is easier to form
the smectic-A state. It is not necessary to investigate χsL as a function of ωL. The
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Figure 3.10: The spinodal χsL
as a function of f calculated
for different λA/LA in which
λA/LA = λB/LB.

Figure 3.11: The spinodal χsL
as a function of f calculated
for different λB/LB in which
λA/LA = 102.

Figure 3.12: The spinodal χsL
as a function of f calculated
for different λA/LA in which
λB/LB = 10−4.
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Figure 3.13: The spinodal ωsL
as a function of λA/LA on loga-
rithmic scale in which λA/LA =

λB/LB and f = 0.5.

Figure 3.14: The spinodal ωsL
as a function of f calculated
for different λA/LA in which
λA/LA = λB/LB.

Figure 3.15: The spinodal ωsL
as a function of f calculated
for different λA/LA in which
λB/LB = 102.

Figure 3.16: The spinodal ωsL
as a function of χsL in which
λA/LA = 102, λB/LB = 10−4

and f = 0.5.
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function χs(ω) appeared to be the inverse function of ωs(χ), because Eq. (3.54) and
(3.55) are mathematically equivalent. The dependence of ωsL on χL and χsL on ωL
also occurs in the results in [12] and in very less degree in [13]. This dependence
is caused by the great difference in bending stiffness of the A- and B-block. The
nematic interaction ω has a stronger effect on the stiff part which causes a separation
of rods and coils. If there is no difference in bending stiffness the nematic interaction
ω does not distinguish between A- and B-blocks. Then the dependence of ωsL on χL
or χsL on ωL does not occur.

In the following table the spinodal χsL has been calculated for rod-rod, coil-coil
and rod-coil diblocks with f = 0.5. These spinodals are results of our work and from
[9–13] to show differences and similarities.

this thesis Reenders Friedel Matsen Singh Holyst-Schick

[9] [10] [11] [12] [13]

rod-rod 7.55 − 7.55 6.14 8.30 −
coil-coil 10.49 − 10.49 10.49 10.49 −
rod-coil 10.85 9.09 10.40 − 8.71 9.00

The results according to our theory are in agreement with Friedel’s results. Only
in the spinodal of the rod-coil diblock there is a difference of 1%. In Matsen [11]
the self-consistent field theory is applied which is a different theory compared to the
Landau theory applied in this thesis and in [9, 10, 12, 13]. Maybe this has led to a
lower χsL for a rod-rod diblock. In Singh’s paper the spinodal of a rod-rod chain is
greater than in our calculation. In Singh the connected A- and B-rod can still rotate
freely with respect to each other while in our calculation the tangent vectors of the
A- and B-part are always taken equal at the connection point. This extra degree of
freedom gives a greater entropy so a greater χsL is necessary to form a microphase.
In the calculation according to Singh, Holyst-Schick and Reenders there are no great
differences in the spinodal of a rod-coil diblock, but the spinodal in our and also
Friedel’s calculation is significantly greater. In our and Friedel’s calculation the chain
is approximately described by the Bawendi-Freed model [16] which gives additional
potentials 3

4 u2(l = 0) and 3
4 u2(l = L) at the begin- and end point of the chain. In

the other papers these terms are missing in the Hamiltonian. Maybe this has led to
different results. Such a difference also occurs if our spinodal ωsL is compared to the
one calculated by Holyst and Schick. For a rigid rod which contains only one kind of
monomer ωsL = 5.0 according to Eq. (5.2) in [13]. The same value can also be read
from Fig. (7) in Singh’s paper. We find that ωsL = 4.53.
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3.6 Results and discussion of the phase diagram

The theory in the previous sections is applied to calculate the phase diagram of a melt
of semi-flexible diblock copolymers. In this section the influence of the stiffness on
the phase behaviour is investigated in different systems. In each system the stiffness
of the A- and B-block is fixed. We have considered and compared the following
possibilities: (a) rod-coil (λA/LA = 102 � λB/LB = 10−4); (b) semi-coil (λA/LA =

10−1 � λB/LB = 10−4); (c) semi-semi (λA/LA = 10−1 = λB/LB); (d) coil-coil
(λA/LA = 10−4 = λB/LB). The latter one is selected to compare it with the well-know
system investigated by Leibler in [5]. The phase diagram is reproduced correctly.

Before presenting the results one important point has to be clarified. In our model
the Maier-Saupe interaction and bending stiffness are described by independent pa-
rameters ωαβ and λα/Lα in which α, β = A or B. However, in reality these parameters
are related. The Maier-Saupe interaction between two blocks becomes stronger if the
blocks become stiffer. In a rod-rod system in which λA/LA � 1 and λB/LB � 1 the
parameters ωαβ cannot be chosen small, because such a melt would be an unphysical
system according to [29] and [30]. In these papers the Onsager model is applied to in-
vestigate a solution or melt of liquid-crystalline polymers. According to the Onsager
model the isotropic state is not possible in a melt of rigid rods. Due to the excluded
volume effect the rods will always align in a melt. In our theory the steric interaction
is described by assuming that the melt is incompressible. Due to steric interactions
the chains tend to align. The contribution of this alignment force is included in the
Maier-Saupe parameters ωαβ. These parameters also contain contributions of attrac-
tive van der Waals forces. According to our theory the isotropic state is possible for
every stiffness λA/LA and λB/LB if the parametersωαβ are zero. This means that there
is no alignment force which is not possible. Due the excluded volume effect there is
always an alignment force so that ωαβ > 0. If the A- or B-block becomes stiffer and
stiffer a lower force is necessary to induce nematic ordering. Then at least one of the
parameters ωαβ may become greater than the spinodal ωαβ,s = ωαβ,s(q∗ = 0), so that
the melt is always in the nematic state. In that case our theory cannot be used to make
further predictions of the phase behaviour. Our expression of the Landau free energy
can only be applied in the neighbourhood of a phase transition at which the isotropic
state is converted into an ordered state. However, according to [29] and [30] in a
melt of semi-flexible chains the isotropic state becomes possible if the persistence
length λ of the chain is small enough. λ must satisfy the condition λ

d < 50 in which
d is the diameter of the chain. In our theory the length-scale is chosen such that one
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monomer occupies one unit of volume, so that the order of magnitude of d is one,
d ≈ 1. In system (c) in which (λA/LA = 10−1 = λB/LB) this condition is satisfied,
because the diblock length L can be chosen such that λA, λB ≤ 10−1L < 50. Then it is
allowed to choose the parameters ωαβ such that each ωαβ is smaller than the spinodal
ωαβ,s = ωαβ,s(q∗ = 0).

In Fig. (3.17), (3.18) and (3.19) the phase diagram of a melt of monodisperse
diblock copolymers has been calculated in which the persistence length of the A-
block λA is much greater than the persistence length of the B-block, λA � λB. λB/LB

is taken equal to λB/LB = 10−4 so that the B-block can be regarded as totally flexible.
The A-block is made very stiff, λA/LA = 102, and behaves as a rigid rod. Because the
B-block is very flexible the orientation ΥB has been neglected in the calculation, ΥB ≈
0. Also the influence of the Maier-Saupe parameters ωBB and ωAB is neglected. Only
the interaction ωAA = ω between stiff A-blocks is taken into account. In Fig. (3.17),
(3.18) and (3.19) the ratio r = ωAA

χ = ω
χ is taken equal to 0, 0.4 and 0.7, respectively.

In these figures we can clearly see that the phase behaviour is influenced in different
ways by the strength of the nematic interaction ω with respect to χ. The domain of
the bcc phase is a very narrow line when r = 0. The bcc line becomes broader at a
greater r. The domains of the hexagonal and smectic-A phase also become greater.
The smectic-C domain is shifted to a greater χ.

To explain the influence of r on the phase behaviour the components |Ψ1| and |ΥA
1 |

in the primary eigenvector x1 = (Ψ1,Υ
A
1 ,Υ

B
1 ) are investigated in Fig. (3.21) in both

the smectic-C, smectic-A, hexagonal and bcc phase. In this figure at f = 0.6 |Ψ1| and
|ΥA

1 | are calculated as a function of χL at r = 0, 0.4 and 0.7 in the different microphase
structures. The orientation θ of the smectic-C phase is found by minimizing the
Landau free energy with respect to θ. At a lower χL close to the spinodal χsL the
minimum is found at θ = 0◦ so that the smectic-C line coincides with the smectic-A
line in Fig. (3.21). In this figure we see that the density parameter |Ψ1| in the different
microphase structures is ordered according to the sequence,

|Ψ1,smecC | ≥ |Ψ1,smecA| ≥ |Ψ1,hex| ≥ |Ψ1,bcc|, (3.57)

in which |Ψ1,smecC |, |Ψ1,smecA|, |Ψ1,hex| and |Ψ1,bcc| denote the density parameters in
the smectic-C, smectic-A, hexagonal and bcc phase, respectively. In the same way
the orientation strength |ΥA

1 | is ordered by,

|ΥA
1,smecC | ≥ |ΥA

1,smecA| ≥ |ΥA
1,hex| ≥ |ΥA

1,bcc|. (3.58)

In Fig. (3.21) when r increases both |Ψ1| and |ΥA
1 | becomes lower in each microphase

structure. So the Maier-Saupe interaction counteracts microphase separation. This
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Figure 3.17: Phase diagram of a
rod-coil diblock in which r = 0.

Figure 3.18: Phase diagram of a
rod-coil diblock in which r =0.4.

Figure 3.19: Phase diagram of a rod-coil diblock in which r = 0.7.

effect is also observed in the phase diagrams in Fig. (3.17), (3.18) and (3.19). The
bcc and hexagonal domain become greater at a greater r and the domain of smectic-A
and smectic-C phase are shifted to a greater χL. By means of Eq. (3.57) and (3.58) it
can be concluded that the melt prefers a microphase with a lower |Ψ1| and |ΥA

1 | when
r increases. The decrement of |ΥA

1 | is contrary to what we would expect, because a
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strong Maier-Saupe interaction will induce a nematic state. The parameter |ΥA
1 | is

the strength of a space dependent orientation. In the nematic state there is global
alignment of stiff A-blocks with strength |ΥA

10|. A nonzero |ΥA
10| is also induced in a

microphase, but is very weak. The secondary eigenvector x10 = (ΥA
10,Υ

B
10) ≈ (ΥA

10, 0)
contains a global orientation ΥA

10. The secondary parameter x10 = ±|x10| ≈ ±|ΥA
10| is

given by Eq. (3.14) in which n = 10,

x10 =
−C(3)

11,10x2
1

2λ10
+ O(x3

1). (3.59)

If the Maier-Saupe interaction increases the positive eigenvalue λ10 becomes lower
which enhances the global orientation |ΥA

10|. This parameter increases strongly if ωαβ
reaches the spinodal ωαβ,s(q∗ = 0), because then λ10 ↓ 0. In the bcc phase a global
nematic ordering cannot be induced so that |ΥA

10,bcc| = 0.

In Fig. (3.18) and (3.19) there is a dashed line at which ωAA = ω = ωs(q∗ = 0) or
χ = χs(q∗ , 0). In Fig. (3.19) at f = 0.71 both ω = ωs(q∗ = 0) and χ = χs(q∗ , 0)
in the dashed line. At that point the eigenvalues λ1 and λ10 in Eq. (3.11) are zero
so that both microphase separation and nematic ordering become possible. Then
the final form given by Eq. (3.15) cannot be applied at a greater χ. Here only the
eigenvalue λ1 is negative which makes it possible to write the free energy in a power
series expansion of only one primary parameter x1. If both eigenvalues λ1 and λ10
are negative there are two primary parameters x1 and x10. Then the final form of the
free energy becomes,

FL

V
= min
{x1,x10}

{λ1x2
1 + λ10x2

10 + C(3)
111x3

1 + C(3)
11,10x2

1x10 + C(3)
10,10,10x3

10+

C̃(4)
1111x4

1 + C̃(4)
111,10x3

1x10 + C̃(4)
11,10,10x2

1x2
10 + C̃(4)

10,10,10,10x4
10}, (3.60)

in which the coefficients of the fourth order terms contain contributions from sec-
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ondary eigenvectors x2, x3 and x20,

C̃(4)
1111 = C(4)

1111 −
∑

n,1,10

(C(3)
11n)2

4λn
, (3.61a)

C̃(4)
111,10 = C(4)

111,10 −
C(3)

11,2C(3)
1,10,2

2λ2
−

C(3)
11,3C(3)

1,10,3

2λ3
, (3.61b)

C̃(4)
11,10,10 = C(4)

11,10,10 −
(C(3)

1,10,2)2

4λ2
−

(C(3)
1,10,3)2

4λ3
−

C(3)
11,20C(3)

10,10,20

2λ20
, (3.61c)

and

C̃(4)
10,10,10,10 = C(4)

10,10,10,10 −
(C(3)

10,10,20)2

4λ20
. (3.61d)

Numerically it appears that in each kind of microphase structure the coefficient
C(4)

1111 in Eq. (3.15) and (3.61a) becomes negative if χ becomes too great. C(4)
1111 is

always positive if χ is close enough to χs. Here the mean field approximation is
more reliable. However, the coefficient C(4)

10,10,10,10 in Eq. (3.61d) is always negative

so that in Eq. (3.60) C̃(4)
10,10,10,10x4

10 < 0. In that case the free energy given by Eq.
(3.60) cannot have a finite minimum. Higher order terms would be necessary to
compensate the negative contribution. These terms are very complicated and will not
be calculated. So above the dashed line in Fig. (3.18) and (3.19) the phase behaviour
cannot be predicted by means of Eq. (3.60). Because below the dashed line a smectic-
C state is found, we also expect a layered structure above that line. In this structure
the orientation tensor Q

α
(x) is spatially dependent, but contains a stronger global

component Q0

α
, because λ10 < 0. In this way the spatial average

〈
Q
α
(x)

〉
,

〈
Q
α
(x)

〉
=

1
V

∫

V
d3xQ

α
(x) = Q0

α
, (3.62)

is nonzero. If ω < ωs(q∗ = 0) there is also global nematic ordering possible in
addition to the spatially dependent orientation. In that part of the phase diagram the
global orientation x10 is a secondary parameter which is expressed by Eq. (3.59),

x10 =
−C(3)

11,10x2
1

2λ10
+ O(x3

1). (3.63)
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Figure 3.20: The wave mode q∗ and the spinodal χsL as a function of r in a
rod-coil diblock melt in which f = 0.6.

If λ10 � 0 this orientation is very weak, but when λ10 ↓ 0 it becomes stronger. If
it is too strong the expression of the Landau free energy given by Eq. (3.15) is not
reliable.

In the right part of Fig. (3.18) the boundary line between the smectic-C and
hexagonal domain has a nod at f = 0.74. At this point the angle θ at the boundary
changes discontinuously from 12.9◦ to 89.9◦ when f is increasing. In the right part
of Fig. (3.18) the smectic-C domain is close to the dashed line. Here the induced
global nematic ordering given by Eq. (3.63) becomes stronger, because λ10 ↓ 0. In
the fourth order term in Eq. (3.15) this nematic ordering gives a great contribution.
Due to this effect the minimum at θ = 89.9◦ has become the lowest minimum. In Fig.
(3.19) at f = 0.65 such a nod is also found at which θ changes discontinuously. At
this nod when f is increasing θ jumps from 13◦ to 89.9◦. At f = 0.67 the boundary
line has been stopped and is extended by a dotted line. At f > 0.67 the eigenvalue λ10
in Eq. (3.11) is too close to zero so that the fourth order term has become negative.
Here the phase behaviour cannot be predicted. However, reliable predictions can also
not be made if the fourth order term is still positive but close to zero. Then Eq. (3.15)
is also not reliable.

In Fig. (3.20) the spinodal χsL and the corresponding wave mode q∗ are plot-
ted as a function of the ratio r at f = 0.6 for a rod-coil diblock. When r increases
χsL becomes lower due to the stronger Maier-Saupe interaction. This effect has also
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been observed in section 3.5. It is caused by the great difference in bending stiffness
between the A- and B-block. If the A- and B-block have the same bending stiffness
the influence of the Maier-Saupe interaction on the spinodal χsL and the wave mode
q∗ is negligible. When r becomes greater q∗ is increasing which means that the size
of the A- and B-rich domains becomes smaller. A smaller domain size increases the
total contact area between A- and B-blocks in the whole melt. This could explain
why in Fig. (3.21) |Ψ1| and |ΥA

1 | are lowered when r increases. A weaker microphase
separation increases the mixing entropy, but the enthalpic contribution χ̃abΨaΨb in
Eq. (3.5) becomes lower. At r = 0 the wave length 2π

q∗ is maximal and a microphase
cannot be formed at a smaller wave length. If the domain size becomes smaller the
enthalpic contribution χ̃abΨaΨb becomes too weak and cannot be compensated by
an increment of the mixing entropy. However, when the Maier-Saupe interaction is
switched on the enthalpic contribution 1

2ωabΥaΥb in Eq. (3.5) gives an additional
compensation. This additional compensation could make it possible to form a mi-
crophase with a smaller domain size. Therefore in Fig. (3.20) q∗ increases when
r becomes greater. In the same way it can be explained why χsL is lowered by a
stronger Maier-Saupe interaction.

In Fig. (3.22) the angle θ in degrees is calculated as a function of χL at r = 0
and 0.4 when f = 0.68. If r = 0.7 the angle θ of the smectic-C state cannot be
investigated, because the fourth order term in Eq. (3.11) is negative for certain angles
θ. At the phase transition point at f = 0.68 just above the spinodal the smectic-
A state is formed. When χ becomes greater at a certain point the smectic-A state
is converted into the smectic-C state. At the transition we see in Fig. (3.22) that the
angle θ changes discontinuously from θ = 0◦ to a nonzero θ. After the transition when
χ is further increased the angle θ increases and converges to a constant value. At a
greater χ the function θ(χL) cannot be further drawn, because the coefficient C(4)

1111 in
Eq. (3.11) becomes negative. From Fig. (3.17), (3.18), (3.19), (3.20) and (3.21) it has
been concluded that the Maier-Saupe interaction counteracts microphase separation.
This may also explain the influence of ω in the smectic structure observed in Fig.
(3.22). When the nematic interaction ω is switched on the transition from smectic-A
to smectic-C takes place at a greater χ. At the same time the angle θ in the smectic-C
state has become smaller.

In Fig. (3.24), (3.25) and (3.26) the phase diagram is calculated in which the
persistence length of the A-block λA is again much greater than the persistence length
of the B-block, λA � λB. In the previous phase diagrams the A-block is made very
stiff such that it can be regarded as a rigid rod. In Fig. (3.24), (3.25) and (3.26)
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Figure 3.21: Components |Ψ1| and |ΥA
1 | calculated as a function of χL at

f = 0.6 and r = 0, 0.4 and 0.7 in different microphase structures for a
rod-coil diblock melt.



Monodisperse diblocks 65

Figure 3.22: The orientation
angle θ in the smectic-C phase
as a function of χL of a rod-
coil diblock at f = 0.68.

Figure 3.23: Orientation of an
A-block in the middle of an A-
rich layer in the smectic-A and
smectic-C phase.

the stiffness of the A-block is made lower, λA/LA = 10−1. Here the A-block is called
semi-flexible. The stiffness is such that it does not behave as a rigid rod or a Gaussian
chain. The B-block is again totally flexible, λB/LB = 10−4. Therefore the orientation
ΥB has been neglected in the calculation, ΥB ≈ 0, so that the Maier-Saupe parameters
ωBB and ωAB are excluded. In Fig. (3.24), (3.25) and (3.26) the ratio r =

ωAA
χ = ω

χ

is taken equal to 0, 3 and 5, respectively. In the dashed line ω = ωs(q∗ = 0) or
χ = χs(q∗ , 0). If the parameter r is increased we see that the bcc region becomes
broader which is also observed in Fig. (3.17), (3.18) and (3.19). The smectic-C
phase is not formed at r = 0 when f > 0.706. The dotted line is an extension of the
calculated solid line. When r increases the smectic-C domain is shifted to a lower
χ which makes the hexagonal and smectic-A part smaller. Only very close to the
phase transition point the size of the hexagonal part increases a little bit. Here the
influence of r on the phase behaviour is the same as in the previous phase diagrams
and can be explained in the same way. However, the influence of r on the smectic-C
domain is different. The angle θ in the previous phase diagrams is within the interval
8◦ < θ < 18◦ and depends on the parameters χ, r and f . In Fig. (3.24), (3.25) and
(3.26) in the smectic-C phase the angle θ is constant, θ = 54.7◦. Exactly at θ = 54.7◦

the director n is such that n2
x − 1

3 = cos2 θ − 1
3 = 0. Then in the smectic-C state

the tensor component Υxx
A (x) vanishes, Υxx

A (x) = 0. This means that orientation of
A-blocks is random in the x-direction. Because Υxx

A (x) = 0 the components Υzz
A (x)

and Υ
yy
A (x) are compensating each other, Υzz

A (x) = −Υ
yy
A (x). So if θ = 54.7◦ the

orientation direction in an A-rich layer is perpendicular to the orientation in a B-



66 Chapter 3

Figure 3.24: Phase diagram
of a semi-coil diblock in
which r = 0.

Figure 3.25: Phase diagram
of a semi-coil diblock in
which r = 3.

Figure 3.26: Phase diagram of a semi-coil diblock in which r = 5.

rich layer. From numerical calculations it appears that such a state is not formed. If
θ = 54.7◦ it appears that in the primary eigenvector x1 = (Ψ1,Υ

A
1 ,Υ

B
1 ) the component

ΥA
1 becomes zero, so that x1 = (Ψ1, 0, 0). Only in the secondary eigenvectors a

nonzero orientation of A-blocks is possible. The contribution of these vectors is
negligibly small so if θ = 54.7◦ the smectic-C state can be regarded as a lamellar
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state with only a nonzero scalar order-parameter.
This effect does not only occur in Fig. (3.24), (3.25) and (3.26). In other kinds of

diblocks it also appears that when θ = 54.7◦ the primary eigenvector is x1 = (Ψ1, 0, 0)
for each χ and ωαβ. If θ , 54.7◦ there is always some orientation ΥA

1 or ΥB
1 if the

persistence length of the A- or B-block is great enough. The alignment is such that
the A-B contact is as small as possible. Without orientation the A- and B-blocks may
have more contact which is enthalpically less favourable. However, the entropy of
the melt is higher without orientation. Maybe the enthalpy gain due to the alignment
has a greater effect and compensates the entropy loss.

To explain the influence of r on the phase behaviour the parameters |Ψ1| and |ΥA
1 |

are calculated again as a function of χ at f = 0.6 and r = 0, 2.5 and 5 in Fig. (3.27).
In this figure in the smectic-C phase the orientation θ is taken equal to θ = 54.7◦. The
orientation strength |ΥA

1 | of the smectic-C phase is not drawn in Fig. (3.27), because
in this state |ΥA

1 | = 0 when θ = 54.7◦. In Fig. (3.27) we see that the density parameter
|Ψ1| in the different microphase structures is also ordered according to Eq. (3.57),

|Ψ1,smecC | ≥ |Ψ1,smecA| ≥ |Ψ1,hex| ≥ |Ψ1,bcc|, (3.64)

but the orientation strength |ΥA
1 | is ordered differently,

|ΥA
1,smecA| ≥ |ΥA

1,hex| ≥ |ΥA
1,bcc| ≥ |ΥA

1,smecC | = 0. (3.65)

Here the orientation strength |ΥA
1,smecC | in the smectic-C phase is zero. Therefore in

Fig. (3.27) the density parameter |Ψ1,smecC | does not change very much when r in-
creases. |Ψ1,smecA|, |Ψ1,hex| and |Ψ1,bcc| become lower at a greater r. The influence of
the Maier-Saupe interaction on |ΥA

1 | in the different microphase structures is not very
great. From Eq. (3.64) and Fig. (3.24), (3.25) and (3.26) it can be concluded that
close to the spinodal χsL the melt prefers a microphase with a lower |Ψ1| when r in-
creases. Here microphase separation is counteracted by the Maier-Saupe interaction.
However, at a greater χL the smectic-C phase is formed in which |Ψ1| is maximal
according to Eq. (3.64). In this phase the Maier-Saupe interaction cannot have much
influence on the microphase separation because there is no space dependent orien-
tation, |ΥA

1,smecC | = 0. Only a very weak global orientation |ΥA
10| = |x10| given by

Eq. (3.59) is possible which increases at a greater r. In the other microphases |Ψ1|
is lowered by r. Then the smectic-C phase becomes more favourable because of the
separation enthalpy. This could explain why the smectic-C domain is shifted to a
lower χL when r becomes greater. So further away from the spinodal χsL the Maier-
Saupe interaction enhances microphase separation by forming a smectic-C state with
a greater density parameter |Ψ1|.
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Figure 3.27: Components |Ψ1| and |ΥA
1 | calculated as a function of χL at

f = 0.6 and r = 0, 2.5 and 5 in different microphase structures for a semi-
coil diblock melt.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.28: Phase diagrams of a semi-semi diblock in which rAB = 0 and
the other parameters rAA and rBB are varied
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(a) (b)

(c) (d)

(e) (f)

Figure 3.29: Phase diagrams of a semi-semi diblock in which rAB = 2.5
and the other parameters rAA and rBB are varied.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.30: Phase diagrams of a semi-semi diblock in which rAB = 5 and
the other parameters rAA and rBB are varied.
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In Fig. (3.28a) till (3.30f) the phase diagram has been determined in which both
the A- and B-block are semi-flexible, λA

LA
=

λB
LB

= 10−1. In the previous phase dia-
grams it was justified to neglect the orientation of the B-block ΥB, because the B-
block is totally flexible. However in Fig. (3.28a) till (3.30f) both the A- and B-block
are semi-flexible so that both orientations ΥA and ΥB have to be taken into account.
Not only the Maier-Saupe parameter ωAA influences the phase behaviour, but also the
other parameters ωAB and ωBB may change the structure of the melt. In Fig. (3.28a)
till (3.30f) it has been investigated how the phase behaviour is influenced by the three
parameters ωAA, ωAB and ωBB. In these figures the Maier-Saupe parameters are cou-
pled to the Flory-Huggins interaction χ by choosing each ratio rαβ =

ωαβ
χ constant.

In Fig. (3.28a) till (3.30f) the three parameters rαβ can have three different values 0,
2.5 and 5 which gives 18 different combinations if we choose rAA ≤ rBB. Because of
symmetry it is not necessary to consider combinations in which rAA > rBB. In the first
six figures the interaction rAB is always zero and the other parameters rAA and rBB are
varied. In the second and third set of six figures rAB = 2.5 and 5, respectively, and
rAA and rBB are varied in the same way. In the dashed line in Fig. (3.30f) and other
figures at least one of the parameters ωαβ is equal to the spinodal ωαβ(q∗ = 0). Above
the dashed line the phase behaviour cannot be predicted. If we compare Fig. (3.28a)
and (3.28b) we see in Fig. (3.28b) that the smectic-C domain is shifted to a lower
χ. The parameter has also a very small influence on the bcc line and the hexagonal
domain which cannot be seen in Fig. (3.28b). The bcc line becomes broader and
in the neigbourhood of the phase transition point the size of the hexagonal domain
increases. In Fig. (3.28c) rBB is greater which gives a greater change in the phase be-
haviour. The influence of rBB is greater in the left part of the phase diagram, because
here the B-block is longer. In the same way the parameter rAA influences the phase
behaviour in the right part of the phase diagram which can be seen in Fig. (3.28d)
till (3.28f). In the figures in which rAB , 0 we see the same effect if rAA and rBB are
changed. The parameter rAB has the contrary effect. If rAB is increased the size of the
bcc and hexagonal domain becomes smaller and the smectic-A part becomes greater.
The smectic-C part is shifted to a greater χL. The influence of rAB is stronger in the
neighbourhood of f = 0.5, because here more interaction between A- and B-blocks
is possible. In Fig. (3.29a) and (3.30a) rAA = rBB = 0 so that the influence of rAB

is very strong. Here the bcc, hexagonal and smectic-C phase have even disappeared
and only the smectic-A phase is formed when χL > χsL. In the other phase diagrams
in Fig. (3.28a) till (3.30f) the effect of rAB is compensated by the contrary effect of
rAA or rBB. This can be illustrated by means of Fig. (3.28a), (3.29d) and (3.30f) in
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Figure 3.31: Phase diagram of a coil-coil diblock.

which the three r-parameters are equal, rAA = rAB = rBB. In each of these figures
at f = 0.5 the smectic-C state is formed at exactly the same Flory-Huggins strength
χL = 10.69. Here the influence of rAB is exactly compensated by rAA and rBB.

In the smectic-C state in Fig. (3.28a) till (3.30f) the orientation θ is θ = 54.7◦

which is the same as in Fig. (3.24), (3.25) and (3.26). Then in the primary eigenvector
x1 = (Ψ1,Υ

A
1 ,Υ

B
1 ) the orientation parameters ΥA

1 and ΥB
1 are zero, ΥA

1 = ΥB
1 = 0. The

influence of rAA and rBB on the phase behaviour is the same as the influence of r
observed in Fig. (3.24), (3.25) and (3.26) and can be explained in the same way. The
parameter rAB has a contrary effect on the microphase structure of the melt which is
rather obvious.

In Fig. (3.31) the phase diagram has been determined in which both the A- and
B-block have a persistence length close to zero, λA

LA
= λB

LB
= 10−4. Here the diblock

chain can be regarded as totally flexible. In the general expression of the Landau
free energy given by Eq. (3.5) the terms which contain an orientation tensor Υa will
disappear if the persistence length of each block approaches zero. Therefore it is
justified to neglect the orientation and write the Landau free energy as a function of
only the scalar order-parameter Ψa. In this way the phase diagram in Fig. (3.31) is
calculated which is in agreement with Leibler’s result in [5].

In Fig. (3.28a) till (3.30f) and (3.31) the phase transition point in the phase dia-
gram is found at f = fc = 0.5, but in Fig. (3.17), (3.18), (3.19), (3.24), (3.25) and
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(3.26) fc has been shifted to fc = 0.68. If f < fc the bcc and hexagonal phase are
formed by A-rich domains which prefer to be embedded by a B-rich matrix. The size
of the embedded A-rich domains increases when the length LA becomes greater. At
f > fc the size is too great and therefore the melt prefers the reverse state in which
the B-blocks are embedded by a matrix of A-blocks. Exactly at the phase transition
point the probability that an A-block is inside the matrix is the same as the prob-
ability to be outside the matrix. Then a nonzero density order-parameter Ψ is not
possible. Only the smectic-A or C state can be formed at the phase transition point.
In Fig. (3.28a) till (3.30f) and (3.31) the A- and B-block have the same ratio λα/Lα,
so that at f = 0.5 the A- and B-block are mathematically identical. This explains
why the phase transition point is reached at f = 0.5. The phase transition point in
Fig. (3.17), (3.18), (3.19), (3.24), (3.25) and (3.26) is shifted to f = 0.68 at which the
stiffer A-block is longer than the flexible B-block. So the stiffer A-block prefers to be
embedded by a matrix of flexible B-blocks in a greater domain of the phase diagram.
The stiffness of the A-block makes it difficult to form an A-rich matrix. The number
of possible melt configurations could be greater if a matrix of flexible B-blocks is
formed. Even if the B-block is shorter than the A-block more melt configurations
could still be possible because of the great flexibility of the B-blocks. Only if the
B-block becomes too short the melt prefers to form the reverse state.

In each phase diagram in this section the smectic-A state is formed prior to the
smectic-C state when χ is increasing. By means of Fig. (3.23) it is explained why the
A- and B-blocks could be separated easier in the smectic-C state. In Fig. (3.23) an
A-block in the the middle of an A-rich layer is drawn in the smectic-A and C state.
In the smectic-A phase in the middle of a B-rich layer the A-blocks are stronger
aligned along the wave vector q, but in the middle of an A-rich layer there are on av-
erage some more A-blocks which are oriented perpendicular to q. This will also bring
some more B-blocks to the middle of the A-rich layer which will make the separation
between A- and B-blocks weaker. So in the smectic-A phase only a weak separation
is possible. In the smectic-C phase in Fig. (3.23) the A-block is rotated which will
remove the B-block from the middle of the A-rich layer. Then a stronger separation
becomes possible. Additionally the smectic-A state is rotational symmetric with re-
spect to an arbitrary axis perpendicular to the layers. The smectic-C state does not
have this symmetry and is therefore entropically less favourable. This entropy loss
must also be compensated by a greater χ. This also may explain why the smectic-C
phase is always formed at a greater χ.

Close to the order-disorder phase transition just above the spinodal χs the bcc
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phase is always formed prior to the hexagonal phase when χ is increasing and the
hexagonal phase appears prior to a smectic-A or -C state. These sequence of mi-
crophase structures in the phase diagram is strongly determined by total contact
area between A-rich and B-rich domains in the whole melt. The contact areas Abcc,
Ahex and Asmec of the bcc, hexagonal and smectic phase are related as Abcc : Ahex

: Asmec = 3 : 2 : 1. At a lower χ the melt prefers a microphase with a greater contact
area so that the mixing entropy is greater. At a greater χ a state with a smaller contact
area is formed which is favourable because of the separation enthalpy.

3.7 Concluding remarks

The general theory in chapter 2 is applied to a melt of monodisperse semi-flexible
diblock copolymers. The spinodals χsL and ωsL have been calculated numerically
for different kinds of diblocks. The numerical results are compared to results in [9–
13]. In each of these papers a different model or approach is applied to calculate the
spinodals χsL and ωsL. This could explain why there are quantitatively differences.
However, qualitatively there are no great differences. χsL and ωsL depend on the
parameters λA, λB and f = LA/L in the same way. The dependence of χsL on ωL and
ωsL on χL is also similar.

In this chapter an expression of the Landau free energy of a melt of monodisperse
semi-flexible diblock copolymers is derived using the general theory in chapter 2.
This expression is written in terms of eigenvalues and eigenvectors of the matrices
in Eq. (3.6). In this way the minimum of the Landau free energy with respect to
the order-parameters is determined analytically. Besides a scalar order-parameter
also the orientation tensors of the A- and B-block are taken into account. These
orientation tensors contain a global and a local contribution. The local contribution is
described and visualized in the smectic-A phase and in more complicated structures
such as the hexagonal phase. This description of the orientation tensors is applied
in the expression of the Landau free energy. By means of the Landau theory the
phase structure can be predicted as a function of the composition, persistence length
and the strength of the Flory-Huggins and Maier-Saupe interaction. In several phase
diagrams the bcc, hexagonal, smectic-A, smectic-C and nematic phase are observed.
First a diblock melt has been investigated in which the A-block is a rigid rod and
the B-block is a totally flexible. In such a rod-coil diblock melt it has appeared
that the Maier-Saupe interaction ωAA between stiff A-blocks weakens microphase
separation. At a greater χL a smectic-C phase is found in which 8◦ < θ < 18◦.
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If the stiff A-block is replaced by a semi-flexible block a different phase behaviour
is observed. Here the Maier-Saupe interaction ωAA weakens microphase separation
only close to the spinodal χsL. At a greater χL a smectic-C phase is found in which θ
is always θ = 54.7◦. In this smectic-C phase the separation between A- and B-blocks
is stronger than in other microphase structures which are found in the phase diagram.
However, the orientation tensor of both the A- and B-block is negligible small. So this
smectic-C phase can be regarded as a lamellar phase with only a nonzero scalar order-
parameter. This smectic-C phase is shifted to a lower χL when ωAA increases. Then
microphase separation is enhanced by ωAA if the melt is converted into the smectic-
C phase with θ = 54.7◦. The phase diagram is also calculated if both the A- and
B-block are semi-flexible. Then not only the Maier-Saupe interaction ωAA between
A-blocks, but also the parameters ωAB and ωBB may influence the phase behaviour.
The Maier-Saupe interaction ωAA and ωBB weakens microphase separation close to
the spinodal χsL. At a greater χL a smectic-C with again θ = 54.7◦ is found which is
shifted to a lower χL when ωAA or ωBB increases. This smectic-C phase can also be
regarded as a lamellar phase without any alignment of A- or B-blocks. The effect of
the parameter ωAB on the phase behaviour appeared to be the reverse of that of ωAA

and ωBB.



Chapter 4

Phase behaviour of a melt of
polydisperse semi-flexible diblock
copolymers

4.1 Introduction

In chapter 3 the phase behaviour of a melt of monodisperse semi-flexible diblock
copolymers is investigated. In the general theory of multi-block copolymers in chap-
ter 2 an arbitrary bending stiffness is added to the chains to make the description
more realistic. However, it is not always possible to synthesize a melt in which all
chains are perfectly monodisperse. There is often a certain degree of polydispersity.
To approach reality closer, polydispersity is added which is described by the by the
Schultz-Zimm distribution. In this chapter the influence of both polydispersity and
bending stiffness on the spinodals χs 〈L〉 and ωs 〈L〉 is investigated.

The same system has also been investigated in [23] in a different way. The spin-
odal χs has been derived in the framework of the random phase approximation which
yields,

χs =
1
2

min
{q}

S 0
AA(q) + S 0

BB(q) + 2S 0
AB(q)

S 0
AA(q)S 0

BB(q) − S 0
AB(q)2

(4.1)

In this expression S 0
ab(q) with indices a, b = A, B are single-chain density-density

correlation functions. In the derivation of χs a possible orientation of A and B blocks
in a certain microphase structure has not been taken into account. In this thesis pos-

77
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sible orientation tensors are not ignored because of the bending stiffness. Eq. (4.1)
corresponds the the spinodal of a monodisperse system. Polydispersity is included
by applying a certain distribution p(Lα) with α = A, B to the A- and B-block. Lα is
the block length and p(Lα) is the probability to find a block of kind α with length Lα.
The Schultz-Zimm and other distributions are used for p(Lα). The spinodal 〈χs〉 of a
polydisperse melt is determined by averaging Eq. (4.1) over p(LA) and p(LB),

〈χs〉 =

∫
dLA

∫
dLB p(LA)p(LB)χs. (4.2)

In this chapter the averaging over p(LA) and p(LB) is carried out in a different way
when calculating the spinodal of a melt of polydisperse diblock copolymers. Here
the single-chain correlation functions are averaged and are inserted in the spinodal
expressions given by Eq. (4.10) and (4.11). This will be further explained in detail
in the next section. The influence of the polydispersity on the spinodal investigated
in [23] appears to be contrary to the effect observed in the results of this chapter. In
[23] the spinodal is increasing when the degree of polydispersity becomes greater,
but according to our results the spinodal is decreasing when the system is made more
polydisperse. This difference could be a consequence of the different way of averag-
ing over p(LA) and p(LB).

In [22] and [35] a melt of polydisperse Gaussian diblock copolymers is investi-
gated. The averaging is carried out by means of the Schultz-Zimm distribution in the
same way as our paper. Here the the spinodal χs 〈L〉 is also lowered when the degree
of polydispersity is increasing. In [22] the A- and B-block have the same degree
of polydispersity. Besides the spinodal and scattering function the phase diagram is
also determined in which it is investigated whether the bcc, hexagonal, lamellar or
disordered phase is formed at a certain point ( f , χ 〈L〉). In general the transition lines
between the different phase domains are lowered when the polydispersity becomes
stronger. In the calculation of the phase diagram fluctuation corrections are taken
into account according to the theory in [32]. According to [35] in the synthesis of a
diblock melt the polydispersity of one kind of block in the chain can be often better
controlled than the polydispersity of the other kind of block. In that paper the A-block
has a fixed length and the polydispersity of the B-block is varied. The self-consistent
field theory is applied to describe the system. The spinodal χs 〈L〉 is calculated in the
random phase approximation and confirmed by the results of the self-consistent field
theory.
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4.2 Theory

In chapter 2 an expression of the Landau free energy is derived for a general melt of
semi-flexible multi-block copolymers. In this chapter this expression is applied to a
melt of polydisperse semi-flexible diblock copolymers. Interactions of two types are
incorporated into the free energy. The first one, Flory-Huggins interaction, unfavours
contacts between different blocks and in the case of a diblock is described by a sin-
gle parameter χ. The other interaction, Maier-Saupe, is responsible for the uniaxial
alignment in the system and, in our case of an AB-diblock, is characterized by three
parameters ωAA, ωAB and ωBB. In what follows, for simplicity, we assume them all be
equal to ω. Both χ and ω are generally assumed to be inversely proportional to tem-
perature. Hence, describing the phase equilibrium in terms of χ and ω, one, in fact,
describes the behaviour of the system as a function of temperature T . Apparently, for
low enough χ and ω, i.e. at high T , the melt finds itself in a spatially homogeneous
isotropic state. However, upon increase in χ (or ω) above certain values χs (or ωs),
this state becomes unstable against spatial arrangement of different blocks (or their
axial alignment). E.g. a melt of monodisperse diblock copolymers becomes unstable
against microphase separation if χ > χs. If polydispersity with respect to the length
of the A- and B-block is included into the picture, both macrophase and microphase
separation become possible at χ > χs. In the same way nematic ordering becomes
possible when ω > ωs. Micro- and macrophase separation may also be induced.

A possible macrophase structure could be a melt with one big A-rich and one
big B-rich domain on a macroscopic length scale. The A-rich domain is formed
by collecting diblocks in which the A-block fraction is greater than average. The
remaining diblocks form the B-rich domain. In a melt of monodisperse chains it is
not possible to form a such a macroscopic structure, because the composition and
chain length are identical in each diblock. A greater degree of polydispersity makes
a stronger separation possible on macroscopic length scale. Within the macroscopic
A-rich and B-rich domain local microphase separation is possible which is called
phase coexistence.

In this chapter only the spinodal analysis of a polydisperse melt of semi-flexible
diblock copolymers is performed. For this purpose one needs the Landau free en-
ergy expansion only up to the second order in the density and orientational order-
parameters. The microscopic order-parameters are defined in detail by Eq. (2.3) till
(2.9). The final form of the Landau free energy given by Eq. (2.75) is written in terms
of the coarse grained order-parameters which are Fourier transformed. In this form
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the second order term is,

F(2)
L

V
= (Γ(2)

ab − χ̃ab)ΨaΨb + 2Γ
(2)
ab

ΨaΥb+

(Γ(2)
ab
− 1

2
ωab)ΥaΥb − 1

3
ωabΥa,i jδi j(Ψb + f b). (4.3)

Because of the polydispersity in the first harmonics approximation a global contribu-
tion must be taken into account in both the density and orientational order-parameters
Ψa and Υa,

Ψa = ΨA(q) = −ΨB(q) = Ψ(q) ≡ Ψ
∑

q′∈H

exp(iϕq′)δ(q − q′) + Ψ0δ(q) (4.4)

and

Υa = Υ
µν
α (q) ≡ Υα(nµαnνα −

1
3
δµν)

∑

q′∈H

exp(iϕq′)δ(q − q′)+

Υ0
α(nµαnνα −

1
3
δµν)δ(q). (4.5)

The set H in Eq. (4.4) and (4.5) is a set of wave vectors with equal length q∗ describ-
ing a certain symmetrical structure, for example the smectic-A or -C phase in which
H = {−q, q}. According to the Landau theory q∗ is the wave number at which the
disordered phase is instable and is converted into an ordered structure. The vector
nµ is the director of the orientation of A- or B-blocks. In chapter 3 it has been ex-
plained that it is justified to assume that nµA = nµB = nµ. In the nematic, smectic-A
and smectic-C phase the director nµ is spatially independent, but in more complicated
structures such as the bcc and hexagonal phase a spatially dependent director nµ(x)
is necessary to describe the orientational structure. In section 3.3 the director nµ(x)
is chosen such that the bcc and hexagonal phase can be expressed as a linear com-
bination of smectic-A phases. In this way the second order term of the Landau free
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energy according to Eq. (4.3) can always be written in the following matrix form,

F(2)
L

V
=

[
Ψ ΥA ΥB

]


Γ̃(2) − χ Γ̃
(2)
A Γ̃

(2)
B

Γ̃
(2)
A Γ̃

(2)
AA − 1

3ωAA Γ̃
(2)
AB − 1

3ωAB

Γ̃
(2)
B Γ̃

(2)
AB − 1

3ωAB Γ̃
(2)
BB − 1

3ωBB





Ψ

ΥA

ΥB

 +

[
Ψ0 Υ0

A Υ0
B

]


Γ̃
(2)
00 − χ Γ̃

(2)
A,00 Γ̃

(2)
B,00

Γ̃
(2)
A,00 Γ̃

(2)
AA,00 − 1

3ωAA Γ̃
(2)
AB,00 − 1

3ωAB

Γ̃
(2)
B,00 Γ̃

(2)
AB,00 − 1

3ωAB Γ̃
(2)
BB,00 − 1

3ωBB





Ψ0

Υ0
A

Υ0
B

 ,

(4.6)

after inserting the first harmonics approximation. In the first matrix the length q∗ of
the set H of wave vectors has a nonzero value and in the second matrix q∗ is zero.
The Γ̃’s in the first matrix are given by

Γ̃(2) = Γ
(2)
ab S aS b, Γ̃

(2)
α = Γ

(2)
ab

S adb
α and Γ̃

(2)
αβ = Γ

(2)
ab

da
αdb

β in which α, β = A, B, (4.7)

and S a and db
α are defined as,

S a ≡ (1 − 2δαB) exp(iϕq) = ± exp(iϕq) in which a = q, α (4.8)

and

db
α ≡ (nµ2

β nν2
β −

1
3
δµ2ν2) exp(iϕq)δαβ in which b = q, β, µ2ν2. (4.9)

The Γ̃’s in the second matrix in Eq. (4.6) can be written in the same way. The
eigenvalues of both matrices in Eq. (4.6) are positive if χ < χs and ω < ωs. In that
case the Landau free energy has a minimum when the order-parameters are zero so
that the melt is in the disordered state. When χ = χs or ω = ωs at least one of the
eigenvalues is zero and becomes negative if χ or ω is further increased. Then the
order-parameters are nonzero at the minimum and the melt is converted into a certain
ordered state. If one of the eigenvalues is zero the determinant of the first or second
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matrix is zero. In this way the expressions of the spinodals χs and ωs can be derived,

χs = min
{q∗,nµ}

{̃Γ(2) − (̃Γ(2)
B )2(̃Γ(2)

AA − 1
3ω) + (̃Γ(2)

A )2(̃Γ(2)
BB − 1

3ω) − 2Γ̃
(2)
A Γ̃

(2)
B (̃Γ(2)

AB − 1
3ω)

(̃Γ(2)
AA − 1

3ω)(̃Γ(2)
BB − 1

3ω) − (̃Γ(2)
AB − 1

3ω)2
}

(4.10)

and

ωs = 3 min
{q∗,nµ}

{ (̃Γ
(2) − χ)(̃Γ(2)

AAΓ̃
(2)
BB − (̃Γ(2)

AB)2) − (̃Γ(2)
A )2Γ̃

(2)
BB + 2Γ̃

(2)
A Γ̃

(2)
B Γ̃

(2)
AB − (̃Γ(2)

B )2Γ̃
(2)
AA

(̃Γ(2) − χ)(̃Γ(2)
AA + Γ̃

(2)
BB − 2Γ̃

(2)
AB) − (̃Γ(2)

A − Γ̃
(2)
B )2

},

(4.11)

in which a minimization is carried out over q∗ and the director vector nµ. These
expressions can be applied for both q∗ = 0 and q∗ , 0. The Γ̃’s given by Eq. (4.7)
depend on the coefficients Γ

(2)
ab , Γ

(2)
ab

and Γ
(2)
ab

in the second order term of the Landau
free energy. These coefficients are related to the second order single-chain correlation
functions Aab, Aab and Aab in a quite complicated way which is written down in detail
in section 2.2. In a melt of polydisperse chains Aab, Aab and Aab are average single-
chain correlation functions,

Aã̃b =
∑

s

ρsAs,̃ãb, (4.12)

in which ã = a or a and b̃ = b or b. The parameter s in Eq. (4.12) labels the type of a
chain and ρs ≡ ns

V is the number density of chains of type s. For a monodisperse melt
ρs = 1

〈L〉 = 1
L , but if the melt is polydisperse ρs becomes,

ρs = ρ(LA, LB) =
p(LA)p(LB)
〈L〉 , (4.13)

in which p(Lα) is the probability to find a block of kind α with a length Lα and the
parameter s is replaced by a continuous set of block lengths {LA, LB}. For p(Lα) the
Schultz-Zimm distribution is applied given by,

p(Lα) =
kkα
α exp(−kαLα

〈Lα〉 )(Lα)kα−1

Γ(kα) 〈Lα〉kα
. (4.14)

In this distribution 〈Lα〉 is the average length and Γ(kα) is the Gamma function. kα
is a dimensionless number which is a measure of polydispersity. If kα → ∞ block
α becomes monodisperse and if kα = 1 Eq. (4.14) is equal to the Flory distribution.
This distribution corresponds to a broad polydisperse system.
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4.3 Results and discussion

The spinodal χs given by Eq. (4.10) is a complicated function which depends on
the composition f = 〈LA〉 / 〈L〉, Maier-Saupe parameter ω, average chain length 〈L〉,
persistence length λα and polydispersity parameter kα,

χs = χs( f , ω, 〈L〉 , λα, kα) with α = A, B. (4.15)

If we choose constant ratio’s λA/ 〈LA〉 and λB/ 〈LB〉 it can be easily verified that
χs ∼ 1/ 〈L〉. In that case χs 〈L〉 is a function of only f , ω, λα/ 〈Lα〉 and kα,

χs 〈L〉 = χs 〈L〉 ( f , ω, λα/ 〈Lα〉 , kα) with α = A, B. (4.16)

The corresponding wave number q∗ multiplied by 〈L〉 is also a function of only f ,
ω, λα/ 〈Lα〉 and kα. In the same way the spinodal ωs 〈L〉 and corresponding q∗ 〈L〉
depend only on f , χ, λα/ 〈Lα〉 and kα.

In Eq. (4.10) and (4.11) a minimization is carried out over the director vector
n = (cos θ, sin θ, 0). It has been verified that the angle θ is always zero. So if a
microphase structure is found at the spinodal χs 〈L〉 or ωs 〈L〉, it is always a smectic-
A phase or a superposition of smectic-A phases in different directions.

For the ratio’s λA/ 〈LA〉 and λB/ 〈LB〉 we have chosen the following possibili-
ties: (a) coil-coil (λA/ 〈LA〉 = 10−4 = λB/ 〈LB〉); (b) semi-semi (λA/ 〈LA〉 = 10−1 =

λB/ 〈LB〉); (c) rod-coil (λA/ 〈LA〉 = 102 � λB/ 〈LB〉 = 10−4); (d) semi-coil (λA/ 〈LA〉 =

10−1 � λB/ 〈LB〉 = 10−4). In Fig. (4.1) till (4.4) χs 〈L〉 and the corresponding wave
number q∗ 〈L〉 are calculated as a function of f for system (a), (b), (c) and (d). In
these figures the parameters kA and kB are chosen such that kA = kB = k and ω = 0.
In each figure the lines belonging to k = 1, 2, 5, 10 and k → ∞ are displayed. In
the same way ωs 〈L〉 is calculated as a function of f in Fig. (4.5) till (4.7) for system
(b), (c) and (d). In these figures χ = 0 and the corresponding wave number q∗ 〈L〉 is
always zero when Eq. (4.11) is minimized with respect to q∗ 〈L〉. Hence, above ωs

the system always becomes unstable against nematic ordering if the Flory-Huggins
parameter is chosen to be negligibly small. In Fig. (4.8), (4.9) and (4.10) χs 〈L〉 and
q∗ 〈L〉 are calculated as a function of ω 〈L〉 = ωs 〈L〉 for system (b). The line is trun-
cated at the spinodal ωs 〈L〉 = ωs,nem 〈L〉 at which ω 〈L〉 is large enough to form a
nematic phase. In Fig. (4.8) and (4.9) the indices k are k → ∞ and k = 1, respec-
tively, and the composition is f = 0.85. In Fig. (4.10) f = 0.5 and k → ∞. Here
the dependence of χs 〈L〉 and q∗ 〈L〉 on ω 〈L〉 is the same as in Fig. (4.8) and (4.9).
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However, if f = 0.5 and k = 1 the wave number q∗ 〈L〉 is always zero and does not
depend on ω 〈L〉. The spinodal χs 〈L〉 is also independent of ω 〈L〉.

In Fig. (4.1) till (4.10) the A- and B-block have the same degree of polydisper-
sity. It is also interesting to investigate a diblock melt in the same way as in [35]
in which the polydispersity of only one block is varied while the other block is al-
ways monodisperse. This is done in Fig. (4.11) till (4.17). In Fig. (4.11) till (4.13)
χs 〈L〉 and the corresponding wave number q∗ 〈L〉 are calculated as a function of f
for system (a) and (c) when ω = 0. In each figure the lines belonging to the pa-
rameters kA = 1, 2, 5, 10 and kA → ∞ are displayed and for kB the limit kB → ∞
is always taken. In Fig. (4.12) the polydispersity of the rod-part is varied and the
coil-part remains monodisperse. The reverse is done in Fig. (4.13) in which kA and
kB are interchanged. In the same way in Fig. (4.14) and (4.15) ωs 〈L〉 is calculated
for system (c) when ω = 0. In these figures the minimum of ωs 〈L〉 is always reached
when q∗ 〈L〉 is zero. In Fig. (4.16) and (4.17) χs 〈L〉 and q∗ 〈L〉 are calculated as a
function of ω 〈L〉 = ωs 〈L〉 for system (c) at f = 0.5. The line is again truncated at the
spinodal ωs 〈L〉 = ωs,nem 〈L〉. In Fig. (4.16) kA = 1 and kB → ∞ and in Fig. (4.17)
the parameters kA and kB are interchanged.

In general the spinodal χs 〈L〉 and wave number q∗ 〈L〉 are lowered when the
polydispersity becomes stronger. So microphase separation takes place at a lower χ
and the size of the A-rich and B-rich domains increases. For certain kinds of diblocks
q∗ 〈L〉 has even become zero which means that macrophase separation has become
possible.

This phenomenon can be explained in the following way. In a monodisperse melt
all diblocks have the same composition f =

〈LA〉
〈L〉 =

LA
L . Then only small A-rich and

B-rich domains can be formed at the spinodal χs 〈L〉. However, in a polydisperse
melt there are diblock chains possible whose composition deviates strongly from the
average composition f . Some diblocks have a relatively long A- or B-block such
that these diblocks can be considered as homopolymers. These chains prefer to be in
the centre of A-rich and B-rich domains. If the polydispersity increases the number
of homopolymer-like diblocks increases. Then more chains of this kind assemble
to the centre of A-rich and B-rich domains which will make these domains greater.
If the amount of homopolymer-like diblocks is great enough macrophase separation
becomes possible at the spinodal χs 〈L〉. In a monodisperse melt only a microphase
structure can be formed with a small domain size. Due to the smaller domain size an
A-block in an A-rich domain has to travel a shorter distance to reach a B-rich domain.
This makes it easier to mix A- and B-blocks so that a stronger χ is necessary to keep
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Figure 4.1: The spinodal χs 〈L〉 and the corresponding wave number q∗ 〈L〉
as a function of f calculated for different k in system (a).

Figure 4.2: The spinodal χs 〈L〉 and the corresponding wave number q∗ 〈L〉
as a function of f calculated for different k in system (b).

the A- and B-blocks separated from each other. So if the polydispersity increases
separation is stimulated, because the domain size increases. This could explain why
χs 〈L〉 is lowered when the polydispersity increases.

The spinodal ωs 〈L〉 calculated at χ = 0 is also lowered by the polydispersity.
In a polydisperse melt there is always a small amount of homopolymer-like diblocks
with a much longer A- or B-block. If λA/ 〈LA〉 � λB/ 〈LB〉 the diblocks with a much
longer and stiffer A-block will align easier. These chains could make it possible to
form a nematic phase at a lower ω. The chains are considered as semi-flexible if
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Figure 4.3: The spinodal χs 〈L〉 and the corresponding wave number q∗ 〈L〉
as a function of f calculated for different k in system (c).

Figure 4.4: The spinodal χs 〈L〉 and the corresponding wave number q∗ 〈L〉
as a function of f calculated for different k in system (d).

λA/ 〈LA〉 = λB/ 〈LB〉 = 10−1. In such a melt nematic ordering is also induced at a
lower ω when the chains are polydisperse. This can be explained by means of the
intrinsic mixing entropy of A- and B-blocks within one chain. In the disordered state
the semi-flexible chains are curved a little bit. This increases the entropy, but too
much curvature is energetically unfavourable. The curvature will also mix A- and B-
blocks within one chain. To form a nematic phase each chain must be straightened.
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Figure 4.5: The spinodal ωs 〈L〉
as a function of f calculated for
different k in system (b).

Figure 4.6: The spinodal ωs 〈L〉
as a function of f calculated for
different k in system (c).

Figure 4.7: The spinodal ωs 〈L〉 as a function of f calculated for different
k in system (d).

This will separate the A- and B-monomers within one chain which lowers the intrinsic
mixing entropy. This effect is small for the homopolymer-like diblocks so that these
chains will align easier. A monodisperse melt does not contain homopolymer-like
diblocks which could explain the greater spinodal ωs 〈L〉.

The spinodal χs 〈L〉 and corresponding wave number q∗ 〈L〉 depend on ω 〈L〉 as
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Figure 4.8: The spinodal χs 〈L〉 and the corresponding wave number q∗ 〈L〉
as a function of ω 〈L〉 = ωs 〈L〉 calculated for f = 0.85 and k → ∞ in
system (c).

Figure 4.9: The spinodal χs 〈L〉 and the corresponding wave number q∗ 〈L〉
as a function of ω 〈L〉 = ωs 〈L〉 calculated for f = 0.85 and k = 1 in system
(c).

long as q∗ 〈L〉 , 0. χs 〈L〉 is lowered and q∗ 〈L〉 is increased when ω 〈L〉 increases
and ω 〈L〉 < ωs,nem 〈L〉. This behaviour is also observed and explained in chapter 3
in which a melt of monodisperse diblock copolymers is investigated. If q∗ 〈L〉 = 0
at the spinodal χs 〈L〉 not only macrophase separation, but also global nematic order
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Figure 4.10: The spinodal χs 〈L〉 and the corresponding wave number q∗ 〈L〉
as a function of ω 〈L〉 = ωs 〈L〉 calculated for f = 0.5 and k → ∞ in system
(c).

Figure 4.11: The spinodal χs 〈L〉 and the corresponding wave number q∗ 〈L〉
as a function of f calculated for different kA in system (a).

may become possible. This can be investigated by determining the normalized eigen-
vectors x̂i = (Ψ̂i, Υ̂

A
i , Υ̂

B
i ) of the second matrix in Eq. (4.6) belonging to the smallest

eigenvalue λ = 0. In this matrix in which q∗ 〈L〉 = 0 it has been verified that the co-
efficients Γ̃

(2)
A,00 and Γ̃

(2)
B,00 are zero for all possible parameters f , λα/ 〈Lα〉 and kα with

α = A, B. Consequently the scalar order-parameter is decoupled from the orientation
tensors. Therefore at χ 〈L〉 = χs 〈L〉 the eigenvector is x̂1 = (1, 0, 0). This eigenvector
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Figure 4.12: The spinodal χs 〈L〉 and the corresponding wave number q∗ 〈L〉
as a function of f calculated for different kA in system (c).

does not change when ω 〈L〉 is varied between zero and ωs,nem. As long as ω 〈L〉
is not too great only macrophase separation is possible and global nematic order is
not stimulated by the Flory-Huggins interaction χ. When ω 〈L〉 ≥ ωs,nem 〈L〉 global
nematic order takes place. Reversibly, when χ 〈L〉 ≤ χs 〈L〉 and ω 〈L〉 = ωs 〈L〉 the
density components of the eigenvectors at λ = 0 are zero. These eigenvectors are in-
dependent of χ 〈L〉. So the Maier-Saupe interaction ω does not stimulate macrophase
separation. When both χ 〈L〉 = χs 〈L〉 and ω 〈L〉 = ωs,nem 〈L〉 the eigenvalue λ = 0
is two or three fold degenerate. Then one eigenvector is x̂1 = (1, 0, 0) and other
eigenvectors x̂2 and x̂3 must contain nonzero orientational components.

In chapter 3 the influence of the bending stiffness on the spinodals χsL and ωsL
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Figure 4.13: The spinodal χs 〈L〉 and the corresponding wave number q∗ 〈L〉
as a function of f calculated for different kB in system (c).

Figure 4.14: The spinodal
ωs 〈L〉 as a function of f calcu-
lated for different kA in system
(c).

Figure 4.15: The spinodal
ωs 〈L〉 as a function of f calcu-
lated for different kB in system
(c).

of a melt of monodisperse semi-flexible diblock copolymers has been investigated. It
has been verified that the effects observed in the numerical results in chapter 3 also
occur in the spinodals χs 〈L〉 and ωs 〈L〉 of a polydisperse melt. However, in the re-
sults of this chapter the influence of the bending stiffness λA/ 〈LA〉 and λB/ 〈LB〉 is
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Figure 4.16: The spinodal χs 〈L〉 and the corresponding wave number q∗ 〈L〉
as a function of ω 〈L〉 = ωs 〈L〉 calculated for f = 0.5, kA = 1 and kB → ∞
in system (c).

Figure 4.17: The spinodal χs 〈L〉 and the corresponding wave number q∗ 〈L〉
as a function of ω 〈L〉 = ωs 〈L〉 calculated for f = 0.5, kA → ∞ and kB = 1
in system (c).

relatively small and cannot always be observed clearly. Furthermore, the wave num-
ber q∗ 〈L〉 is lowered by the bending stiffness in both monodisperse and polydisperse
systems. A more flexible A- or B-block makes it possible to form smaller domains
in a microphase structure which yields an entropy gain. If the stiffness is increased
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small domains are energetically unfavourable so that q∗ 〈L〉 will decrease.

In the results some remarkable phenomena are observed. First the bending stiff-
ness does not always lower the wave number q∗ 〈L〉 if we look for instance in Fig.
(4.1) and (4.2). In Fig. (4.1) macrophase separation is predicted at f = 0.5 in the line
at which k = 1, but not in Fig. (4.2). This could be explained by means of intrinsic
mixing entropy within one diblock. In the disordered phase a totally flexible diblock
behaves as a random walk such that within one coil the A- and B-block are mixed
homogeneously. To form a microphase structure the A-block and B-block within one
chain must be separated from each other. This is unfavourable, because this reduces
the intrinsic mixing entropy within one chain. However, to form a macrophase struc-
ture it is not necessary to separate the A- and B-block within one chain. This could
explain why a coil-coil diblock melt prefers macrophase separation. If the diblock
is semi-flexible it is energetically unfavourable to fold the chain into a coil. There-
fore a semi-flexible diblock is much straighter so that the A- and B-block are already
separated within one chain. This could make it easier to form a microphase structure.

Secondly if k = 1 we see that q∗ 〈L〉 = 0 in Fig. (4.3) and (4.4) at lower values
of f , while in Fig. (4.1) and (4.2) a microphase structure is predicted. Comparing
these figures at k = 1 it again appears that the bending stiffness does not always lower
the wave number q∗ 〈L〉. Fig. (4.3) and (4.4) corresponds to asymmetric diblocks in
which λA/ 〈LA〉 � λB/ 〈LB〉. In Fig. (4.3) and (4.4) the stiffer A-block is shorter
than the totally flexible B-block at lower values of f . To form a microphase structure
the stiffer part must be separated from the coil within one chain. If the stiffer part is
much longer than the radius of the coil, the A- and B-block are separated sufficiently.
However, if the stiffer part is very short it is mixed inside the coil part. This could
make it entropically less favourable to form a microphase structure. Maybe there-
fore the melt prefers macrophase separation if k = 1 at a lower f in Fig. (4.3) and
(4.4). However, in Fig. (4.1) we see that microphase separation takes place instead
of macrophase separation if k = 1 at a lower f . This figure corresponds to a melt
of totally flexible diblocks. In Fig. (4.1) the wave number q∗ 〈L〉 is much greater
than q∗ 〈L〉 calculated in Fig. (4.3) and (4.4). So in a melt of totally flexible diblocks
it is possible to form A- and B-rich domains with a small size. The size is much
smaller than the average chain length 〈L〉. Maybe therefore an microphase structure
is entropically more favourable. If the coil-like A- or B-block is replaced by a much
stiffer block it is not possible to form such small A- and B-rich domains. Therefore
the wave length 2π/q∗ is much greater according to Fig. (4.3) and (4.4). Then within
each chain a greater separation between the stiffer A-block and the coil-like B-block
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is necessary. This could be difficult if the stiffer part is short with respect to the radius
of the coil part. So maybe therefore the melt prefers a macrophase structure at lower
values of f .

A third remarkable effect is observed in Fig. (4.12). At a smaller rod fraction
f the wave number q∗ 〈L〉 is small, but when f is increased further and further at a
certain f the wave number q∗ 〈L〉 jumps to a much greater value. The corresponding
wave length λ = 2π

q∗ has the same order of magnitude as the radius r of the coil
which is r =

√〈LB〉. In that part of the figure the coils are forming domains which
are embedded by a rod-rich matrix. In the other part a macrophase-like structure is
formed in which λ is greater than the chain length 〈L〉. Here A-rich domains are
formed by collecting diblocks with an A-block fraction greater than average. At the
same time B-rich domains arise. A sharp boundary between A- and B-rich domains
cannot be created, so that only a weak separation is possible. This is not favourable
because of enthalpy. The separation becomes even weaker when the A- or B-block
fraction of the melt is made smaller. Maybe therefore the melt prefers to form small
coil-rich domains embedded by a rod rich matrix in the right part of Fig. (4.12). A
coil-rich domain is formed by separating a coil from a rod within one chain. Then a
sharper separation is possible. Additionally, due to the polydispersity of the rods it is
easier to form a rod rich matrix. In the left part the rod-rich domains are embedded
by a coil-rich matrix. However, small rod-rich domains with a size in the order of
magnitude of 〈LA〉 are not formed. Due to polydispersity of rods such a phase could
not be favourable.

In the domain in Fig. (4.12) in which q∗ 〈L〉 is much greater it has been verified
that χs 〈L〉 and q∗ 〈L〉 do not change hardly anything when ω 〈L〉 is varied. Here
the eigenvector x̂1 belonging to the smallest eigenvalue λ1 = 0 is approximately
x̂1 = (Ψ̂1, Υ̂

A
i , Υ̂

B
i ) ≈ (1, 0, 0). This follows from the fact that in the first matrix in

Eq. (4.6) the coefficients Γ̃
(2)
A and Γ̃

(2)
B are negligibly small. So in this microphase

structure there is hardly any orientation of rods.

In Fig. (4.13) q∗ 〈L〉 does not jump to a greater value at a certain A-block fraction
f , so that only a macrophase-like structure is formed. The polydispersity of coils
could make it difficult to form a microphase structure of small coils-rich domains
embedded by a matrix of rods. Furthermore in the left part of Fig. (4.13) q∗ 〈L〉 is
greater than q∗ 〈L〉 in Fig. (4.12). Here a microphase structure is formed in which
rod-rich domains are embedded by a matrix of coils. In Fig. (4.13) the rod-rich
domains are smaller which is possible due to the monodispersity of rods.
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4.4 Concluding remarks

In this chapter the influence of polydispersity on the order-disorder phase transition
is investigated in different systems. As expected, the polydispersity promotes a phase
transition: in each system the spinodals χs 〈L〉 and ωs 〈L〉 are lowered when the poly-
dispersity becomes stronger. This effect is also observed in [22] and [35], but from
the results in [23] the contrary effect follows. This could be a consequence of the
different way of averaging over the block length distribution which describes the
polydispersity.

The influence of the bending stiffness on the spinodals χs 〈L〉 and ωs 〈L〉 of a
polydisperse melt appeared to be the same as the effects observed in section 3.5 in
which the spinodals χsL and ωsL of a melt of monodisperse semi-flexible diblock
copolymers are calculated. In a microphase structure the wave number q∗ 〈L〉 is low-
ered by the bending stiffness in both monodisperse and polydisperse systems.

Furthermore, we observed that the wave number q∗ 〈L〉 is also lowered when
the polydispersity becomes stronger. If the polydispersity is strong enough, q∗ 〈L〉
becomes zero which corresponds to macrophase separation. In a macrophase it has
appeared that the orientation tensors are zero so that there is only a nonzero scalar
order-parameter. Reversibly, in a nematic phase there is only a global orientation. A
nonzero scalar order-parameter is not induced. Only in a spatially inhomogeneous
structure the density and orientation tensors are related to each other.





Chapter 5

Phase behaviour of a melt of
monodisperse semi-flexible
triblock copolymers

5.1 Introduction

In chapter 3 and 4 the phase behaviour of a melt of diblock copolymers has been
investigated. In the general theory of multi-block copolymers in chapter 2 an arbitrary
bending stiffness is added to the chains to make the description more realistic. The
general theory is applied to a monodisperse melt of diblock copolymers in chapter 3.
To approach reality closer, polydispersity is taken into account in chapter 4 which is
described by the Schultz-Zimm distribution.

In this chapter the phase behaviour of a melt of monodisperse semi-flexible tri-
block copolymers is investigated. The triblock is an ABA-triblock in which a block
of kind B is connected at both sides to an A-block. The expression of the Landau
free energy which is derived in section 3.2 for a melt of diblocks copolymers can
also be applied to a melt of ABA-triblocks. The results in this chapter are compared
to the results obtained from a diblock copolymer melt to see the effect of adding a
third block to the diblock chain. In the same way as in section 3.6 in several phase
diagrams the influence of the bending stiffness and Maier-Saupe interaction has been
investigated. Furthermore, the spinodals χsL and ωsL together with the correspond-
ing wave number q∗L are calculated as a function of chain composition and bending
stiffness.

97
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In other papers in the literature only Gaussian triblocks are considered. For ex-
ample, in [47] the stability limit χAB is calculated in the random phase approximation
for linear ABC-triblocks as a function of χAC and χBC . These results are compared
to the results of random and statistical comb copolymers.

In [50] the phase diagram of different gradient copolymers has been calculated
by means of the Landau theory. The gradient copolymers contains two kinds of
monomers A and B. The monomer distribution function g(x) is the probability to find
a monomer of kind A at a distance xN from the first monomer in which N is the
chain length and x is a parameter ranging from zero to one. Different systems with
different distribution functions have been considered, for example systems in which
the distribution function is given by

g(x) = exp(−(c3π(x − x0))4). (5.1)

The corresponding chains are similar to BAB-triblock copolymers. In Eq. (5.1) c3
determines the length of the A-block which is centered at x = x0.

In [3] the self-consistent field theory is applied to investigate the phase behaviour
of ABA-triblock copolymers in which the two A-blocks have the same length. In the
phase diagram the gyroid phase has been observed besides the classical phases which
are the lamellar, hexagonal and bcc structure. This gyroid phase has also been found
in [50]. In this chapter and chapter 3 the possibility of complex phases has not been
investigated.

5.2 Theory

In the same way as in chapter 3 and 4 the phase behaviour of a melt of monodisperse
semi-flexible triblock copolymers is described by means of the Landau theory in the
weak segregation regime. In section 3.2 an expression of the Landau free energy has
been derived for a melt of monodisperse diblock copolymers. However, this expres-
sion is not restricted to diblock copolymers. It can be also be applied to a melt of
monodisperse ABA-triblocks, ABAB-tetrablocks and other multi-block copolymers
in which two kinds of blocks A and B are connected alternatingly.

This can be explained by means of the expression of the Landau free energy
which has been derived in chapter 2 for a very general melt of multi-block copoly-
mers. It is a power series expansion up to the fourth order in Fourier transform of the
coarse grained density and orientational order-parameters Ψa and Υa, respectively.
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The microscopic order-parameters are defined in detail by Eq. (2.3) till (2.9). The
final form of this expression is given by,

FL

V
= min

Ψ,Υ
{(Γ(2)

ab − χ̃ab)ΨaΨb + 2Γ
(2)
ab

ΨaΥb+

(Γ(2)
ab
− 1

2
ωab)ΥaΥb − 1

3
ωabΥa,i jδi j(Ψb + f b)+

Γ
(3)
abcΨ

aΨbΨc + 3Γ
(3)
abcΨ

aΨbΥc + 3Γ
(3)
abc

ΨaΥbΥc + Γ
(3)
abc

ΥaΥbΥc+

Γ
(4)
abcdΨaΨbΨcΨd + 4Γ

(4)
abcd

ΨaΨbΨcΥd + 6Γ
(4)
abcd

ΨaΨbΥcΥd+

4Γ
(4)
abcd

ΨaΥbΥcΥd + Γ
(4)
abcd

ΥaΥbΥcΥd}. (5.2)

In this expression the Γ’s are related to single-chain correlation functions in a quite
complicated way which is written down in detail in section 2.2. For a monodisperse
melt only the single-chain correlation functions of one kind of chain has to be calcu-
lated. This has been done in the numerical calculation of the phase diagram of a melt
of monodisperse semi-flexible diblock copolymers in chapter 3. In the same way the
single-chain correlation functions can be calculated for a multi-block copolymer in
which more than two blocks of kind A and B are connected alternatingly, for example
an ABA-triblock.

The first harmonics approximation defined in chapter 3 can be applied for a gen-
eral melt of alternating multi-block copolymers,

Ψa = ΨA(q) = −ΨB(q) = Ψ(q) ≡ Ψ
∑

q′∈H

exp(iϕq′)δ(q − q′) (5.3)

and

Υa = Υ
µν
α (q) ≡ Υα(nµαnνα −

1
3
δµν)

∑

q′∈H

exp(iϕq′)δ(q − q′)+

Υ0
α(nµαnνα −

1
3
δµν)δ(q), (5.4)

and is inserted in Eq. (5.2). The set H in Eq. (5.3) and (5.4) is a set of wave
vectors with equal length q∗ describing a certain symmetrical structure, for example
the smectic-A or -C phase in which H = {−q, q}. According to the Landau theory q∗
is the wave number at which the disordered phase is instable and is converted into an
ordered structure. The vector nµ is the director of the orientation of A- or B-blocks.
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In chapter 3 it has been explained that it is justified to assume that nµA = nµB = nµ

in a diblock melt. For the same reason it can be assumed that nµA = nµB = nµ in a
melt of alternating multi-block copolymers. In the nematic, smectic-A and smectic-
C phase the director nµ is spatially independent, but in more complicated structures
such as the bcc and hexagonal phase a spatially dependent director nµ(x) is necessary
to describe the orientational structure. In the same way as in chapter 3 the director
nµ(x) is chosen such that the bcc and hexagonal phase can be expressed as a linear
combination of smectic-A phases.

In this way the second order term of the Landau free energy according to Eq.
(5.2) can always be written in the following matrix form,

F(2)
L

V
=

[
Ψ ΥA ΥB

]


Γ̃(2) − χ Γ̃
(2)
A Γ̃

(2)
B

Γ̃
(2)
A Γ̃

(2)
AA − 1

3ωAA Γ̃
(2)
AB − 1

3ωAB

Γ̃
(2)
B Γ̃

(2)
AB − 1

3ωAB Γ̃
(2)
BB − 1

3ωBB





Ψ

ΥA

ΥB

 +

[
Υ0

A Υ0
B

] 
Γ̃

(2)
AA,00 − 1

3ωAA Γ̃
(2)
AB,00 − 1

3ωAB

Γ̃
(2)
AB,00 − 1

3ωAB Γ̃
(2)
BB,00 − 1

3ωBB




Υ0
A

Υ0
B

 , (5.5)

after inserting the first harmonics approximation. For simplicity in Eq. (5.5) the three
parameters ωAA, ωAB and ωBB have been taken equal, ωAA = ωAB = ωBB = ω. In the
first matrix the length q∗ of the set H of wave vectors has a nonzero value and in the
second matrix q∗ is zero. The Γ̃’s in the first matrix are given by

Γ̃(2) = Γ
(2)
ab S aS b, Γ̃

(2)
α = Γ

(2)
ab

S adb
α and Γ̃

(2)
αβ = Γ

(2)
ab

da
αdb

β in which α, β = A, B, (5.6)

and S a and db
α are defined as,

S a ≡ (1 − 2δαB) exp(iϕq) = ± exp(iϕq) in which a = q, α (5.7)

and

db
α ≡ (nµ2

β nν2
β −

1
3
δµ2ν2) exp(iϕq)δαβ in which b = q, β, µ2ν2. (5.8)

The Γ̃’s in the second matrix in Eq. (5.5) can be written in the same way. The
eigenvalues of the first matrix in Eq. (5.5) are denoted as λ1, λ2 and λ3 and in the
second matrix these are written as λ10 and λ20. The corresponding eigenvectors are
x1, x2, x3, x10 and x20. If the Flory-Huggins parameter χ and Maier-Saupe parameter
ω are low enough the melt is in the disordered state. In that case all eigenvalues λ1,
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λ2, λ3, λ10 and λ20 are positive. At the spinodals χ = χs or ω = ωs at least one of the
eigenvalues is zero and becomes negative if χ or ω is further increased. In this way
the expressions of χs and ωs are determined which are,

χs = min
{q∗,nµ}

{̃Γ(2) − (̃Γ(2)
B )2(̃Γ(2)

AA − 1
3ω) + (̃Γ(2)

A )2(̃Γ(2)
BB − 1

3ω) − 2Γ̃
(2)
A Γ̃

(2)
B (̃Γ(2)

AB − 1
3ω)

(̃Γ(2)
AA − 1

3ω)(̃Γ(2)
BB − 1

3ω) − (̃Γ(2)
AB − 1

3ω)2
}

(5.9)

and

ωs = 3 min
{q∗,nµ}

{ (̃Γ
(2) − χ)(̃Γ(2)

AAΓ̃
(2)
BB − (̃Γ(2)

AB)2) − (̃Γ(2)
A )2Γ̃

(2)
BB + 2Γ̃

(2)
A Γ̃

(2)
B Γ̃

(2)
AB − (̃Γ(2)

B )2Γ̃
(2)
AA

(̃Γ(2) − χ)(̃Γ(2)
AA + Γ̃

(2)
BB − 2Γ̃

(2)
AB) − (̃Γ(2)

A − Γ̃
(2)
B )2

},

(5.10)

in which a minimization is carried out over q∗ and the director vector nµ. These
expressions can be applied for both q∗ = 0 and q∗ , 0.

In general the eigenvalues λ1, λ2, λ3, λ10 and λ20 are different. In section 3.2 the
free energy of a microphase structure is derived in which λ1 is negative and the other
eigenvalues are still positive. It has appeared that this free energy can be written as a
power series expansion of only one parameter x1 = ±|x1| and is given by

FL

V
= min

x1
{λ1x2

1 + C(3)
111x3

1 + (C(4)
1111 −

∑

n,1

(C(3)
11n)2

4λn
)x4

1} =

min
x1
{λ1x2

1 + C(3)
111x3

1 + C̃(4)
1111x4

1}. (5.11)

At the minimum x1 is

x1 =
−3C(3)

111 ±
√

9(C(3)
111)2 − 32λ1C̃(4)

1111

8C̃(4)
1111

. (5.12)

In this final form of the Landau free energy the C−coefficients are expressed in detail
in section 3.2. Such a form can also be derived for a general melt of alternating
multi-block copolymers.

5.3 Results and discussion

In the results of this section a melt of monodisperse semi-flexible triblock copolymers
is considered. In the triblock the length of the first and second A-block are denoted
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as LA1 and LA2. The parameter f is the A-block fraction which is defined by f
≡ (LA1 + LA2)/L = LA/L. For a triblock melt another parameter τ is necessary to
determine the chain composition which is the ratio between the length of the first and
second A-block, τ ≡ LA1/LA2. The influence of these composition parameters f and
τ on the phase behaviour is investigated in the following systems: (a) coil-coil-coil
(λA/LA = 10−4 = λB/LB); (b) semi-semi-semi (λA/LA = 10−1 = λB/LB); (c) coil-
rod-coil (λA/LA = 10−4 � λB/LB = 102); (d) rod-coil-rod (λA/LA = 102 � λB/LB =

10−4).
First the spinodals χsL and ωsL are calculated together with the corresponding

wave number q∗L. χsL is a function of the parameters f , τ, ω and λα/Lα,

χsL = χsL( f , τ, ω, λα/Lα) with α = A, B. (5.13)

The corresponding wave number q∗L depends on the same set of parameters. In the
same way the spinodal ωsL and corresponding q∗L are both functions of f , τ, χ and
λα/Lα.

In Eq. (5.9) and (5.10) a minimalization is carried out over the director vector
n = (cos θ, sin θ, 0). It has been verified that the angle θ is always zero. So if a
microphase structure is found at the spinodal χsL or ωsL, it is always a smectic-A
phase or a superposition of smectic-A phases in different directions.

In Fig. (5.1) till (5.4) χsL and the corresponding wave number q∗L are calculated
as a function of f for system (a), (b), (c) and (d). In each figure the lines belonging to
τ = 0, 1/8, 1/4, 1/2 and 1 are displayed andω = 0. In the same wayωsL is calculated
as a function of f in Fig. (5.5) for system (b), (c) and (d). In these figures χ = 0 and
the corresponding wave number q∗L is always zero when Eq. (5.10) is minimized
with respect to q∗L. Hence, above ωs the system always becomes unstable against
nematic ordering if the Flory-Huggins parameter is chosen to be negligibly small. In
Fig. (5.6) χsL and q∗L are calculated as a function of ωL = ωsL for system (c) and
(d). The composition parameters are f = 0.5 and τ = 1. The line is truncated at the
spinodal ωsL = ωs,nemL at which ωL is great enough to form a nematic phase.

In Fig. (5.7) till (5.9) the complete phase diagram has been calculated for system
(a), (c) and (d). In system (a) the orientations of the A- and B-block are neglected,
ΥA ≈ 0 and ΥB ≈ 0, because the triblock is regarded as totally flexible. For the
same reason in system (c) and (d) only the orientation of the stiff blocks is taken
into account. Therefore only the Maier-Saupe interaction ω between stiff blocks may
influence the phase behaviour. The ratio r = ω

χ has been varied in Fig. (5.8) and (5.9).
In general in Fig. (5.1) till (5.4) the spinodal χsL and corresponding wave number

q∗L are decreasing when τ becomes smaller. This could be explained in the following
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Figure 5.1: The spinodal χsL and the corresponding wave number q∗L as a
function of f calculated for different τ in system (a).

Figure 5.2: The spinodal χsL and the corresponding wave number q∗L as a
function of f calculated for different τ in system (b).

way. At τ = 0 the chain is a diblock and so if τ is close to zero the triblock can
be regarded as a diblock-like chain. In a melt of ABA-triblocks it could be more
difficult to form a microphase structure, because each B-block is connected at both
sides to an A-block. This restricts the configurational freedom of a B-block in a B-
rich domain. If the chain is a diblock the B-block has one free. The other chain
end prefers to be removed further from the centre of a B-rich domain to stimulate
microphase separation. In a triblock both ends avoid the centre of a B-rich domain.
In that case fewer chain configurations are possible. Consequently in a triblock melt
the entropy loss is greater when a microphase structure is formed. The entropy loss
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Figure 5.3: The spinodal χsL and the corresponding wave number q∗L as a
function of f calculated for different τ in system (c).

must be compensated by a stronger repulsion χ. This effect is weakened when the
triblock becomes a diblock-like chain which could explain why the spinodal χsL is
lower at a smaller τ.

At the same time the corresponding wave number q∗L is decreasing. So at a
smaller τ the size of the domains in the microphase structure becomes greater. This
follows from the fact that at a constant f the longest A-block in the ABA-triblock
becomes longer when τ decreases. In that case greater A-rich domains are possible
which leads to a smaller q∗L. This may also explain why χsL is lower at a smaller τ.
In a triblock melt the domains are smaller so that an A-block has to travel a shorter
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Figure 5.4: The spinodal χsL and the corresponding wave number q∗L as a
function of f calculated for different τ in system (d).

distance to reach a B-rich domain. This will make it easier to mix A- and B-blocks
so that a stronger χ is necessary to keep the A- and B-blocks separated from each
other. In a melt of diblocks mixing is less easier which could also make microphase
separation possible at a lower χ.

In Fig. (5.5) the spinodal ωsL is calculated which is again lowered when τ be-
comes smaller. This could be explained by the following two reasons. First in a
triblock the B-block is connected at both sides to an A-block but in a diblock the
B-block has one free end. Maybe therefore in a triblock melt the B-blocks could be
hindered in a greater degree to be aligned along the same direction. Secondly within
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Figure 5.5: The spinodal ωsL as a function of f calculated for different τ in
system (b), (c) and (d).

each triblock two A-blocks prefer to be directed in the same direction in the nematic
phase. However, if the chain is a diblock there is only one A-block which has to be
aligned. Maybe therefore in a diblock melt the entropy loss could be smaller when
a nematic phase is formed. To system (c) only the first reason is applicable and to
system (d) only the second one. To system (b) both reasons can be applied.

In Fig. (5.6) χsL is lowered and q∗L is increased by ωsL at f = 0.5 and τ = 1
in both system (c) and (d). This has also been observed and explained in chapter 3
and 4 for a diblock melt. The same explanation can be applied to a triblock melt.
In Fig. (5.3) in the region f < 0.3 the wave number q∗L jumps to a much greater
value in each line at a certain point when f is made smaller. The same effect is
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Figure 5.6: The spinodal χsL and corresponding wave number q∗L as a
function of ωsL calculated in system (c) and (d) at f = 0.5 and τ = 1.

observed in the region f > 0.75 in Fig. (5.4) when f is made greater. In both
figures it has been verified that at such a great wave number the spinodal χsL and
corresponding wave number q∗L do not change hardly anything when ωL is varied.
Here the eigenvector x̂1 belonging to the smallest eigenvalue λ1 = 0 is approximately
x̂1 = (Ψ̂1, Υ̂

A
i , Υ̂

B
i ) ≈ (1, 0, 0). This follows from the fact that in the first matrix in Eq.

(5.5) the coefficients Γ̃
(2)
A and Γ̃

(2)
B are negligibly small. So in this microphase structure

there is hardly any orientation of rods. This phase behaviour has also been observed
in chapter 4 in which a melt of polydisperse diblock copolymers is investigated.

In Fig. (5.7) at τ = 0 the phase diagram is exactly in agreement with the phase
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Figure 5.7: Phase diagram calculated for τ = 0 and τ = 1 in system (a).

diagram calculated by Leibler in [5]. Here the phase transition point is reached at
f = 0.5 but at τ = 1 the phase transition point is shifted to f = 0.524. So at
τ = 1 the phase diagram is asymmetric. In the left side the domain of the hexagonal
phase is greater than in the right side. In the left side the A-block is short enough so
that in the hexagonal phase the A-blocks can form cylinders embedded by a B-rich
matrix. Within one chain two A-blocks can be positioned in the same cylinder or in
two different neighbouring cylinders. This increases the number of possible chain
configurations which could explain why the melt prefers the hexagonal phase more
than the lamellar phase. In the right side of the phase transition point the reverse
hexagonal and bcc phase is formed in which B-rich domains are formed in an A-
rich environment. In these phases less chain configurations are possible which makes
these phases entropically less favourable. Maybe therefore the phase transition point
is reached at f > 0.5 and the hexagonal domain is smaller at the right side of the
phase diagram.

The phase bevaviour of system (c) observed in Fig. (5.8) is similar to the be-
haviour of a rod-coil diblock melt investigated in section 3.6. The phase transition
point is reached at f = 0.326 at which a smectic-A phase is found just above the
spinodal χsL. The size of the domain of the bcc, hexagonal and smectic-A phase in-
creases when the Maier-Saupe interaction becomes stronger. The smectic-C domain
is shifted to a greater χL. This has also been observed in section 3.6 in a rod-coil
diblock melt and can be explained in the same way. When f < 0.272 the wave num-
ber q∗L jumps to a much greater value according to Fig. (5.3). In that region it was
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Figure 5.8: Phase diagram calculated for r = 0, r = 0.2 and r = 0.4 in
system (c) in which τ = 1.

earlier explained that in the eigenvector x̂1 belonging to the lowest eigenvalue λ1 the
orientational components are negligible, x̂1 = (Ψ̂1, Υ̂

A
i , Υ̂

B
i ) ≈ (1, 0, 0). Because this

eigenvector is very dominating, the influence of the Maier-Saupe interaction on the
phase behaviour is also negligible. This can be clearly observed in Fig. (5.8) in the
part at which f < 0.272.

In general the phase behaviour in Fig. (5.9) does not differ very much from the
behaviour in Fig. (5.8). The phase transition point is found at f = 0.742 at which
a smectic-A phase is found just above the spinodal χsL. However, if we compare
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Figure 5.9: Phase diagram calculated for r = 0, r = 0.25 and r = 0.5 in
system (d) in which τ = 1.

Fig. (5.8) and (5.9) we see that in Fig. (5.9) the broad of the domain of the smectic-
A phase is much smaller and the vertical length of the bcc and hexagonal part is
greater. So in system (d) the melt prefers to form a micellar phase above a layered
structure. In system (d) in each chain the two rods are connected by flexible coil so
that the two rods can be rotated independently of each other. In such a chain there
is a greater flexibility to form different chain configurations which makes it easier to
form a micellar phase. In system (c) in each chain two coils are connected by a rod.
Due to the rod in the middle it is more difficult to form different chain configurations
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so that system (c) prefers a layered structure.
In Fig. (5.8) above the phase transition point at f = 0.326 the smectic-A phase is

converted into the smectic-C phase when χL is increased. Exactly at the transition in
the smectic-C phase the orientation θ is θ = 8.9◦, 9◦ and 10.8◦ at r = 0, 0.2 and 0.4,
respectively. If χL is further increased, θ increases and converges to a constant value.
At an even greater χL the coefficient C̃(4)

1111 in Eq. (5.11) becomes negative so that
higher order terms are necessary to determine θ. In Fig. (5.9) the phase transition
point is reached at f = 0.742 at which the smectic-A phase is found again which
is converted into the smectic-C phase at a greater χL. Here θ jumps from θ = 0◦

to θ = 8.1◦, 6.8◦ and 7◦ at r = 0, 0.25 and 0.5, respectively, and converges to a
constant value when χL is increasing. If χL becomes too great the coefficient C̃(4)

1111
in Eq. (5.11) becomes negative again. In general in the smectic-C domain in both Fig.
(5.8) and (5.9) C̃(4)

1111 is closer to zero and χL is further away from the spinodal χsL.
Consequently the magnitude of the order-parameters is greater at the minimum of the
Landau free energy, which makes the power series approximation less reliable. Only
in the neighbourhood of the phase transition point it is allowed to draw conclusions
from the results. In system (c) and (d) the relation between θ and χL is similar to
Fig. (3.22) in section 3.6 which corresponds to a rod-coil diblock melt. In this figure
each line is truncated at the point at which C̃(4)

1111 becomes negative when χL is further
increased.

In the nematic phase the coefficient C̃(4)
1111 in Eq. (5.11) is negative when ωL >

ωsL in the neighbourhood of the phase transition point in both system (c) and (d).
So fifth and higher order terms would be necessary to calculate the minimum of the
free energy. This problem has also occurred in section 3.6. It was assumed that the
nematic phase has always the lowest free energy when ωL > ωsL. This assumption
is again made in this section.

5.4 Concluding remarks

In this chapter the influence of the composition parameter τ on the order-disorder
phase transition is investigated in different systems. In each system the spinodal χsL
and corresponding wave number q∗L are lowered when τ becomes smaller. The same
effect has been observed in the calculations of the spinodal ωsL.

Furthermore, in different systems the phase diagram has been determined. From
the results it has appeared that the phase behaviour of triblock copolymers does not
differ very much from diblock copolymers. Around the phase transition point the
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same phases are formed in the same sequence. The influence of the Maier-Saupe
interaction on the phase behaviour is qualitatively the same. However, in the phase
diagram of a melt of rod-coil-rod triblock copolymers the broad of the domain of the
smectic-A phase is much smaller.
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In this appendix the second, third and fourth order correlation functions as introduced
in chapter 2 are calculated. All second order correlation functions can be derived from
the following generalised second order correlation function,

Aαβ(q
1
, q

2
) ≡

∑

l1,l2

σαl1σ
β
l2

〈
exp

−iq
1
· R(l1) − iq

2
· R(l2) +

L∫

0

dlη(l) ·
.
R(l)


〉

0

=

∑

l1,l2

σαl1σ
β
l2

∫
dŨ

∫
dU

∫
DR

∫
Du δ(u(l) −

.
R(l)) ×

δ(
.
R(0)−Ũ)δ((

.
R(L)−U) exp (−H0) ×

exp

−iq
1
· R(l1) − iq

2
· R(l2) +

L∫

0

dlη(l) · uL)

 . (A.1)

R(l) is the position vector of a certain segment labelled by l. Ũ and U are the the
tangent vectors of the first and last segment, respectively. H0 is the Hamiltonian of
an unperturbed semi-flexible chain. For a semi-flexible homopolymer H0 is equal to

H0 =
3
4

Ũ2 +
3
4

U2 +
3
4

L∫

0

dl[λ
..
R

2
(l) +

1
λ

.
R

2
(l)], (A.2)

which is the Hamiltonian corresponding to the Bawendi-Freed model [16]. In the
Bawendi-Freed model [16] the segments are connected to each other by springs with
a spring constant equal to 3

2λ . On a coarse grained level u(l) is the tangent vector,
but on the microscopic level u(l) is the connection vector between two segments. So

113
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the fourth term of H0 can be regarded as the total spring energy. If we consider 3λ
2

as the mass of a segment, then the third term becomes the total kinetic energy. In
this way H0 can be regarded as the Hamiltonian of a chain of connected harmonic
oscillators. u(l) is on average equal to a unit vector. Another possible model to
describe a semi-flexible chain is the Saitô model [18]. In that model the segments
are not connected by springs. The connection vector u(l) between two segments has
a constant unit length so that only the third term of H0 remains. So in Eq. (A.1) the
delta function δ(u2 − 1) has to be added in the functional integration over u. This
restriction makes the calculation of the correlation function analytically impossible.
Therefore we choose the Bawendi-Freed model [16] in which u(l) is only on average
equal to a unit vector. The first and second term in H0 are local potential energies at
the ends of the homopolymer. These terms are added to the free Hamiltonian so that〈
u(l)2

〉
0

= 1 everywhere along the chain. If these terms are omitted, then
〈
u(l)2

〉
0
, 1

close to the ends of the homopolymer. The local potential energies are necessary to
describe a homogeneous chain according to [14]. Eq. (A.2) is the free Hamiltonian
of a semi-flexible homopolymer with a constant persistent length λ. It can be proven
that in Eq. (A.2) it is allowed to replace the constant λ by an l-dependent persistent
length λ(l). Then Eq. (A.2) can also be applied to a multiblock copolymer.

In Eq. (A.1) η(l) is an arbitrary path which is used to calculate the tensorial

correlation functions
〈
Ŝ α
µ1ν1

(q
1
)ρβ(q

2
)
〉

0
and

〈
Ŝ α
µ1ν1

(q
1
)Ŝ β

µ2ν2(q
2
)
〉

0
. However, in Eq.

(2.51) and (2.52) in chapter 2 the tensor Q̂ α(x) is applied instead of Ŝ α(x) which is
defined by,

Q̂ α(x) ≡ Ŝ α(x) − 1
3
ρ̂α(x) I (α = 1, ...,M). (A.3)

By means of this definition
〈
Q̂α
µ1ν1

(q
1
)ρβ(q

2
)
〉

0
and

〈
Q̂α
µ1ν1

(q
1
)Q̂β

µ2ν2(q
2
)
〉

0
can be ex-

pressed as,

〈
Q̂α
µ1ν1

(q
1
)ρβ(q

2
)
〉

0
=

〈
Ŝ α
µ1ν1

(q
1
)ρβ(q

2
)
〉

0
− 1

3
δµ1ν1

〈
ρα(q

1
)ρβ(q

2
)
〉

0
(A.4a)

and
〈
Q̂α
µ1ν1

(q
1
)Q̂β

µ2ν2(q
2
)
〉

0
=

〈
Ŝ α
µ1ν1

(q
1
)Ŝ β

µ2ν2(q
2
)
〉

0
− 1

3
δµ1ν1

〈
ρα(q

1
)Ŝ β

µ2ν2(q
2
)
〉

0
+

−1
3
δµ2ν2

〈
Ŝ α
µ1ν1

(q
1
)ρβ(q

2
)
〉

0
+

1
9
δµ1ν1δµ2ν2

〈
ρα(q

1
)ρβ(q

2
)
〉

0
. (A.4b)

Third and fourth order tensorial correlation functions are determined in a similar way.
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The physical meaning of these single chain correlation functions can be ex-
plained by Fourier transforming them back into real space.

〈
ρα(x1)ρβ(x2)

〉
0

is the
probability that x1 is in the α-block and x2 is in the β-block of a certain chain.
The average is taken over all possible chain configurations which is denoted by 〈〉0.〈
Ŝ α
µ1ν1

(x1)ρβ(x2)
〉

0
and

〈
Ŝ α
µ1ν1

(x1)Ŝ β
µ2ν2(x2)

〉
0

can be regarded as the expectation value
of uµ1uν1 and uµ1uν1uµ2uν2 , respectively. In both cases x1 must be in the α-block and
x2 in the β-block. The meaning of the higher order correlation functions can be ex-
plained in the same way.

According to Eq. (A.1),

〈
ρα(q

1
)ρβ(q

2
)
〉

0
= lim

η→0
Aαβ(q

1
, q

2
), (A.5a)

〈
Ŝ α
µ1ν1

(q
1
)ρβ(q

2
)
〉

0
= lim

η→0

δ2

δηµ1(l1)δην1(l1)
Aαβ(q

1
, q

2
) (A.5b)

and
〈
Ŝ α
µ1ν1

(q
1
)Ŝ β

µ2ν2(q
2
)
〉

0
= lim

η→0

δ4

δηµ1(l1)δην1(l1)δηµ2(l2)δην2(l2)
Aαβ(q

1
, q

2
).

(A.5c)

When the path integral over R(l) in Eq. (A.1) is carried out, R(l) must be replaced
by

R(l) = R(0) +

l∫

0

dl′u(l′), (A.6)

because of the delta function δ(u(l) −
.
R(l)). The path integral over u(l) remains to-

gether with an integral over the initial position R(0). Then Eq. (A.1) becomes
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Aαβ(q
1
, q

2
) =

∑

l1,l2

σαl1σ
β
l2

∫
dŨ

∫
dU

∫
dR(0)

∫
Du δ(u(0) − Ũ) δ(u(L) − U)×

exp (−H0) exp
(
−iq

1
· R(0) − iq

2
· R(0)

)
×

exp

−iq
1
·

l1∫

0

dlu(l) − iq
2
·

l2∫

0

dlu(l) +

L∫

0

dlη(l) · u(l)

 =

∫
dR(0) exp

(
−iq

1
· R(0) − iq

2
· R(0)

)
×

∑

l1,l2

σαl1σ
β
l2

∫
dŨ

∫
dU

∫
Du δ(u(0) − Ũ) δ(u(L) − U) exp (−H0) ×

exp

−iq
1
·

L∫

0

u(l)θ(l1 − l) − iq
2
·

L∫

0

u(l)θ(l2 − l) +

L∫

0

dlη(l) · u(l)

 =

Vδ
(
q

1
+ q

2

)∑

l1,l2

σαl1σ
β
l2

∫
dŨ

∫
dU

∫
Du δ(u(0) − Ũ) δ(u(L) − U) exp (−H0) .

(A.7)

In Eq. (A.7) Q = Q(l) is given by,

Q(l) = −q
1
θ(l1 − l) − q

2
θ(l2 − l) − iη(l). (A.8)

In a certain interval of l, Q takes a constant value if η(l) → 0. Q = −q
1
− q

2
if

l is smaller than both l1 and l2. Q = −q
1

or Q = −q
2

if l2 < l < l1 or l1 <

l < l2, respectively. The persistence length λ takes also constant values in certain
intervals of l, because the persistence length in every block is constant. To simplify
the calculations the interval (0, L) of the parameter l is divided into smaller parts. In
every subinterval

(
Lp−1, Lp

)
both Q and λ must be constant, which will be denoted as

Q
p

and λp. Q
p

is constant in
(
Lp−1, Lp

)
if η(l) is constant. η(l) is taken equal to zero

everywhere except in (l1 − ∆L, l1) and (l2 − ∆L, l2). In these intervals η(l) is constant
and equal to η(l1) and η(l2), respectively. ∆L is very small and goes to zero. In this
way it is possible to calculate the functional derivatives in Eq. (A.5a), (A.5b) and
(A.5c). For a certain p = p1 or p2, Lp = l1 or l2, respectively. Then in

(
Lp−1, Lp

)
, Q

p
becomes

Q
p

= −q
1
θ(l1 − Lp) − q

2
θ(l2 − Lp) − iδpp1η(l1) − iδpp2η(l2). (A.9)
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According to Eq. (A.2) the free Hamiltonian of each interval is

H(p)
0 =

3
4

u2
0δp1 +

3
4

u2
p′δpp′ +

3
4

Lp∫

Lp−1

dl[λp
.
u2(l) +

1
λp

u2(l)]. (A.10)

So Eq. (A.7) can be written as

Aαβ(q
1
, q

2
) = Vδ

(
q

1
+ q

2

)∑

l1,l2

σαl1σ
β
l2

∫
dŨ

∫
dU ×

∫
Du δ(u(0) − Ũ) δ(u(L) − U) exp

(
−3

4
u2

0 −
3
4

u2
p′

)
×

exp

−
p′∑

p=1

Lp∫

Lp−1

dl[
3λp

4
.
u2(l) +

3
4λp

u2(l) − iQ
p
· u(l)]

 .

(A.11)

In Eq. (A.11) the last interval p is denoted as p′. Instead of integrating over the
whole contour, one can integrate over u(l) separately for each interval (Lp−1, Lp).
This is only allowed when the begin and end points of two subsequent pieces have
the same tangent vector. Then along the whole contour u(l) is continuous. This is
done in Eq. (A.12),

Aαβ(q
1
, q

2
) = Vδ

(
q

1
+ q

2

)∑

l1,l2

σαl1σ
β
l2

〈
exp

−
p′∑

p=1

Lp∫

Lp−1

dl[−iQ
p
· u(l)]



〉

0

=

Vδ
(
q

1
+ q

2

)∑

l1,l2

σαl1σ
β
l2

∫ p′∏

n=0

dun×

exp
(
−3

4
u2

0 −
3
4

u2
p′

) p′∏

p=1

up∫

up−1

Du exp

−
Lp∫

Lp−1

dl[
3λp

4
.
u2(l) +

3
4λp

u2(l) − iQ
p
· u(l)]

 .

(A.12)

In this equation up−1and up are the tangent vectors at the end points of (Lp−1, Lp). In
this notation Ũ = u0 and U = up′ . In the functional integration over u(l) in the interval



118 Appendix A

(Lp−1, Lp) the tangent vectors up−1and up are fixed. After the functional integration
over u(l) integrations over the tangent vectors up are carried out. In Eq. (A.12) the
integral Ip,

Ip =

up∫

up−1

Du exp

−
Lp∫

Lp−1

dl[
3λp

4
.
u2(l) +

3
4λp

u2(l) − iQ
p
· u(l)]

 , (A.13)

has the same form as Eq. (5.21) in [19]. If l is replaced by it and ~ = 1, then Ip is the
Feynman path integral representation of a quantum mechanical harmonic oscillator
with a constant external force Q

p
on each segment. Because the force Q

p
is constant,

Ip can be written in terms of a representation of a quantum mechanical harmonic
oscillator without external force, which is given by Eq. (5.31) in [19],

Ip(up, up−1) = exp

−
Q2

p∆Lpλp

3



up−
2
3

iλpQ
p∫

up−1−
2
3

iλpQ
p

Du exp

−
Lp∫

Lp−1

dl[
3λp

4
.
u2(l) +

3
4λp

u2(l)]

 =

exp

−
Q2

p∆Lpλp

3

G(up −
2
3

iλpQ
p
, up−1 −

2
3

iλpQ
p
,∆Lp, 0). (A.14)

In Eq. (A.14) the propagator G is given by Eq. (A.15). Quantum mechanically the
propagator G(up, up−1,∆Lp, 0) is the probability that a particle at t = 0 and x = up−1
travels to x = up after a time ∆t = −i∆Lp. In our case it is regarded as the probability
that a semi-flexible chain of length ∆Lp has a tangent vector up along the end point, if
up−1 is the tangent vector along the begin point. The result is well known in quantum
mechanics and given by Eq. (5.32) in [19],

G(up, up−1,∆Lp, 0) =

(
b(p)

π sinh a(p)

) 3
2

exp
(
− b(p)

sinh a(p)

[
(u2

p + u2
p−1) cosh a(p) − 2up · up−1

])
,

(A.15)
in which a(p) and b(p) are given by

a(p) =
∆Lp

λp
(A.16a)

and

b(p) =
3
4
. (A.16b)
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Applying Eq. (A.15) in Eq. (A.14) yields

Ip(up, up−1) = exp

−
Q2

p∆Lpλp

3


(

b(p)

π sinh a(p)

) 3
2

×

exp

−
b(p)

sinh a(p)


u2

p + u2
p−1 −

4iλp

3
Q

p
· (up + up−1) − 8λ2

pQ2
p

9

 cosh a(p)


×

exp

−
b(p)

sinh a(p)

−2up · up−1 +
4iλp

3
Q

p
· (up + up−1) +

8λ2
pQ2

p

9


 . (A.17)

Ip(up, up−1) can be written in the following form

Ip(up, up−1) = Ep exp
(
−1

2
Ap(u2

p−1 + u2
p) + Bpup−1 · up

)
×

exp
(
CpQ

p
· (up−1 + up) − 1

2
DpQ2

p

)
, (A.18)

in which Ap, Bp, Cp, Dp and Ep are given by

Ap = 2b(p) coth a(p) =
3
2

coth(
∆Lp

λp
), (A.19a)

Bp =
2b(p)

sinh a(p) =
3

2 sinh(∆Lp
λp

)
, (A.19b)

Cp =
−4iλpb(p)(1 − cosh(a(p)))

3 sinh a(p) =

−iλp

(
1 − cosh(∆Lp

λp
)
)

sinh(∆Lp
λp

)
, (A.19c)

Dp =
2∆Lpλp

3
+

16λ2
pb(p)(1 − cosh a(p))

9 sinh a(p) =
2∆Lpλp

3
+

4λ2
p

(
1 − cosh(∆Lp

λp
)
)

3 sinh(∆Lp
λp

)

(A.19d)

and

Ep =

(
b(p)

π sinh a(p)

) 3
2

=


3

4π sinh(∆Lp
λp

)



3
2

. (A.19e)
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To calculate the second order correlation function we have to perform in Eq. (A.12)
the integral

∫
dup′

p′∏

p=1

∫
dup−1Ip(up, up−1) exp

(
−3

4
u2

0 −
3
4

u2
p′

)

=

∫
dup′

p′∏

p=1

∫
dup−1Ep exp

(
−3

4
u2

0 −
3
4

u2
p′

)
×

exp
(
−1

2
Ap(u2

p−1 + u2
p) + Bpup−1 · up

)
×

exp
(
CpQ

p
· (up−1 + up) − 1

2
DpQ2

p

)
. (A.20)

The integral over up−1 is also a Gaussian integral of the form,

∫
dx exp(−1

2
Cx2 + η · x) =

(
2π
C

) 3
2

exp
(
η2

2C

)
. (A.21)

First we evaluate the integral over u0,
∫

du0I1(u0, u1) exp(−3
4

u2
0)

=

∫
du0E1 exp

(
−1

2
(A1 +

3
2

)u2
0 −

1
2

A1u2
1 + B1u0 · u1

)
×

exp
(
C1Q

1
· (u0 + u1) − 1

2
D1Q2

1

)

= E1


2π

A1 + 3
2


3
2

exp


B2

1

2(A1 + 3
2 )

u2
1 +

B1C1Q
1

A1 + 3
2

· u1 +
C2

1Q2
1

2(A1 + 3
2 )

 ×

exp
(
−1

2
A1u2

1 + C1Q
1
· u1 −

1
2

D1Q2
1

)
. (A.22)

Using Eq. (A.20) and (A.22) the integration over u1 can be written in the following
form ∫

du1Ẽ2 exp
(
−1

2
Ã2u2

1 −
1
2

A2u2
2 + B2u1 · u2

)
×

exp
(
C̃2 · u1 + C2Q

2
· u2 −

1
2

D̃2

)
, (A.23)



Appendix A 121

which is a similar form as Eq. (A.20). Ã2, C̃2, D̃2 and Ẽ2 are given by

Ã2 = A2 + A1 −
B2

1

A1 + 3
2

, (A.24a)

C̃2 = C2Q
2

+


B1

A1 + 3
2

+ 1

C1Q
1
, (A.24b)

D̃2 = D2Q2
2 + D1Q2

1 −
C2

1Q2
1

A1 + 3
2

(A.24c)

and

Ẽ2 = E2E1


2π

A1 + 3
2


3
2

. (A.24d)

In Eq. (A.23) we can again carry out the integral over u1. By means of Eq. (A.20)
an integral over u2 and next tangent vectors can be derived in the same form as Eq.
(A.23). This can be done in the same way for u3 and next tangent vectors. After the
integration over up′−2 and previous tangent vectors we have to carry out the integra-
tion over up′−1 and up′ ,

∫
dup′ exp(−3

4
u2

p′)
∫

dup′−1Ẽp′ ×

exp
(
−1

2
Ãp′u2

p′−1 −
1
2

Ap′u2
p′ + Bp′up′−1 · up′

)
×

exp
(
C̃p′ · up′−1 + Cp′Qp′

· up′ −
1
2

D̃p′

)

=

∫
dup′ Ẽp′+1 exp

(
−1

2
Ãp′+1u2

p′ + C̃p′+1 · up′ −
1
2

D̃p′+1

)

= Ẽp′+2 exp
(
−1

2
D̃p′+2

)
. (A.25)
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For p = 1, 2, ..., p′, the coefficients Ãp, C̃p, D̃p and Ẽp are equal to

Ãp = Ap + Ap−1 −
B2

p−1

Ãp−1
, (A.26a)

C̃p = CpQ
p

+ Cp−1Q
p−1

+
Bp−1C̃p−1

Ãp−1
, (A.26b)

D̃p = DpQ2
p + D̃p−1 −

C̃2
p−1

Ãp−1
, (A.26c)

and

Ẽp = EpẼp−1


2π

Ãp−1


3
2

. (A.26d)

However, p = p′ + 1 and p = p′ + 2 give different coefficients,

Ãp′+1 = Ap′ −
B2

p′

Ãp′
+

3
2
, (A.27a)

C̃p′+1 = Cp′Qp′
+

Bp′C̃p′

Ãp′
, (A.27b)

D̃p′+1 = D̃p′ −
C̃2

p′

Ãp′
, (A.27c)

Ẽp′+1 = Ẽp′


2π

Ãp′


3
2

, (A.27d)

D̃p′+2 = D̃p′+1 −
C̃2

p′+1

Ãp′+1
, (A.27e)

and

Ẽp′+2 = Ẽp′+1


2π

Ãp′+1


3
2

. (A.27f)

The factor Ẽp′+2 in Eq. (A.25) must be omitted to normalize the average 〈〉0 in Eq.
(A.12) over all possible chain configurations, because 〈1〉0 ≡ 1. Then the second
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order correlation function given by Eq. (A.12) becomes,

Aαβ(q
1
, q

2
) = Vδ

(
q

1
+ q

2

)
Ẽp′+2

∑

l1,l2

σαl1σ
β
l2

exp
(
−1

2
D̃p′+2

)
. (A.28)

The third and fourth order correlation functions can be obtained by adding −q
3
θ(l3 −

Lp) − iδpp3η(l3) and −q
3
θ(l3 − Lp) − q

4
θ(l4 − Lp) − iδpp3η(l3) − iδpp4η(l4) to Q

p
.

δ
(
q

1
+ q

2

)
must be replaced by δ

(
q

1
+ q

2
+ q

3

)
and δ

(
q

1
+ q

2
+ q

3
+ q

4

)
. In Eq.

(A.5b) and (A.5c) functional differentiations are to be carried out. These are oper-
ating on D̃p′+2 in Eq. (A.28). First we carry out the functional differentiations of
Aαβ(q

1
, q

2
). In appendix B the functional derivatives of D̃p′+2 are calculated. The

first order derivative of Aαβ(q
1
, q

2
) is

δAαβ(q
1
, q

2
)

δηµ1(l1)
= −1

2
Vδ

(
q

1
+ q

2

)
Ẽp′+2

∑

l1,l2

σαl1σ
β
l2

δD̃p′+2

δηµ1(l1)
exp

(
−1

2
D̃p′+2

)

= Vδ
(
q

1
+ q

2

)
Ẽp′+2

∑

l1,l2

σαl1σ
β
l2

G1 exp
(
−1

2
D̃p′+2

)
. (A.29)

In Eq. (A.29) the differentiation is replaced by a multiplication by G1. This can also
be done for the higher order derivatives. In the second order derivative the multipli-
cation factor is denoted as G2. G1 and G2 are equal to

G1 = −1
2
δD̃p′+2

δηµ1(l1)
(A.30a)

and

G2 =


δ

δην1(l1)
− 1

2
δD̃p′+2

δην1(l1)

G1

= −1
2

δ2D̃p′+2

δηµ1(l1)δην1(l1)
+

1
4
δD̃p′+2

δηµ1(l1)
δD̃p′+2

δην1(l1)
. (A.30b)

In the second, third and fourth order correlation function it is necessary to calculate
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G4, G6 and G8 which are given by

G4 =


δ

δην2(l2)
− 1

2
δD̃p′+2

δην2(l2)




δ

δηµ2(l2)
− 1

2
δD̃p′+2

δηµ2(l2)

G2, (A.31a)

G6 =


δ

δηµ3(l3)
− 1

2
δD̃p′+2

δηµ3(l3)




δ

δην3(l3)
− 1

2
δD̃p′+2

δην3(l3)

G4 (A.31b)

and

G8 =


δ

δηµ4(l4)
− 1

2
δD̃p′+2

δηµ4(l4)




δ

δην4(l4)
− 1

2
δD̃p′+2

δην4(l4)

G6. (A.31c)

So from Eq. (A.31a), (A.31b) and (A.31c) it is clear that G4 has to be calculated first,

G4 =


δ

δην2(l2)
− 1

2
δD̃p′+2

δην2(l2)




δ

δηµ2(l2)
− 1

2
δD̃p′+2

δηµ2(l2)

G2

=


δ

δην2(l2)
− 1

2
δD̃p′+2

δην2(l2)




δ

δηµ2(l2)
− 1

2
δD̃p′+2

δηµ2(l2)

 ×
−

1
2

δ2D̃p′+2

δηµ1(l1)δην1(l1)
+

1
4
δD̃p′+2

δηµ1(l1)
δD̃p′+2

δην1(l1)

 . (A.32)

In appendix B the second order derivative of D̃p′+2 is calculated. It appears that the
second order derivative does not depend on Q

p
. Therefore the third and higher order

derivatives of D̃p′+2 are zero. This will reduce the number of terms in Eq. (A.32)
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when the product is evaluated,

G4 =


δ

δην2(l2)
− 1

2
δD̃p′+2

δην2(l2)




δ

δηµ2(l2)
− 1

2
δD̃p′+2

δηµ2(l2)

×
−

1
2

δ2D̃p′+2

δηµ1(l1)δην1(l1)
+

1
4
δD̃p′+2

δηµ1(l1)
δD̃p′+2

δην1(l1)



= (
δ2

δηµ2(l2)δην2(l2)
−1

2
δ2D̃p′+2

δηµ2(l2)δην2(l2)

−1
2
δD̃p′+2

δηµ2(l2)
δ

δην2(l2)
−1

2
δD̃p′+2

δην2(l2)
δ

δηµ2(l2)
+

1
4
δD̃p′+2

δηµ2(l2)
δD̃p′+2

δην2(l2)
) ×

(−1
2

δ2D̃p′+2

δηµ1(l1)δην1(l1)
+

1
4
δD̃p′+2

δηµ1(l1)
δD̃p′+2

δην1(l1)
)

=
δ2

δηµ2(l2)δην2(l2)


1
4
δD̃p′+2

δηµ1(l1)
δD̃p′+2

δην1(l1)



−1
2

δ2D̃p′+2

δηµ2(l2)δην2(l2)

−
1
2

δ2D̃p′+2

δηµ1(l1)δην1(l1)
+

1
4
δD̃p′+2

δηµ1(l1)
δD̃p′+2

δην1(l1)

 +

−1
2
δD̃p′+2

δηµ2(l2)
δ

δην2(l2)


1
4
δD̃p′+2

δηµ1(l1)
δD̃p′+2

δην1(l1)

 +

−1
2
δD̃p′+2

δην2(l2)
δ

δηµ2(l2)


1
4
δD̃p′+2

δηµ1(l1)
δD̃p′+2

δην1(l1)

 +

1
4
δD̃p′+2

δηµ2(l2)
δD̃p′+2

δην2(l2)

−
1
2

δ2D̃p′+2

δηµ1(l1)δην1(l1)
+

1
4
δD̃p′+2

δηµ1(l1)
δD̃p′+2

δην1(l1)



=
1
4

δ2D̃p′+2

δηµ1(l1)δηµ2(l2)
δ2D̃p′+2

δην1(l1)δην2(l2)
+

1
4

δ2D̃p′+2

δηµ1(l1)δην2(l2)
δ2D̃p′+2

δηµ2(l2)δην1(l1)
+

1
4

δ2D̃p′+2

δηµ1(l1)δην1(l1)
δ2D̃p′+2

δηµ2(l2)δην2(l2)
− 1

8
δ2D̃p′+2

δηµ2(l2)δην2(l2)
δD̃p′+2

δηµ1(l1)
δD̃p′+2

δην1(l1)
+

−1
8

δ2D̃p′+2

δηµ1(l1)δην2(l2)
δD̃p′+2

δηµ2(l2)
δD̃p′+2

δην1(l1)
−1

8
δ2D̃p′+2

δην1(l1)δην2(l2)
δD̃p′+2

δηµ1(l1)
δD̃p′+2

δηµ2(l2)
+

−1
8

δ2D̃p′+2

δηµ1(l1)δηµ2(l2)
δD̃p′+2

δην1(l1)
δD̃p′+2

δην2(l2)
−1

8
δ2D̃p′+2

δηµ2(l2)δην1(l1)
δD̃p′+2

δηµ1(l1)
δD̃p′+2

δην2(l2)
+

−1
8

δ2D̃p′+2

δηµ1(l1)δην1(l1)
δD̃p′+2

δηµ2(l2)
δD̃p′+2

δην2(l2)
+

1
16

δD̃p′+2

δηµ1(l1)
δD̃p′+2

δην1(l1)
δD̃p′+2

δηµ2(l2)
δD̃p′+2

δην2(l2)
. (A.33)
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This expression of G4 can be written in a more compact form. In Eq. (A.34) a
summation is carried out over all possible permutations of µ1, µ2, ν1 and ν2. ηµ1(l1)
is denoted as ηµ1 . The same is done for the other η’s. Then Eq. (A.33) becomes,

G4 =
1
32

∑

perm(µ1,ν1,µ2,ν2)

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

+

− 1
32

∑

perm(µ1,ν1,µ2,ν2)

δ2D̃p′+2

δηµ1δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

+

1
4!16

∑

perm(µ1,ν1,µ2,ν2)

δD̃p′+2

δηµ1

δD̃p′+2

δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

. (A.34)

This expression of G4 can be used to calculate G6,

G6=


δ

δηµ3

− 1
2
δD̃p′+2

δηµ3



δ

δην3

− 1
2
δD̃p′+2

δην3

G4

= (
δ2

δηµ3δην3

− 1
2
δ2D̃p′+2

δηµ3δην3

− 1
2
δD̃p′+2

δηµ3

δ

δην3

+

−1
2
δD̃p′+2

δην3

δ

δηµ3

+
1
4
δD̃p′+2

δηµ3

δD̃p′+2

δην3

)×

(
1
32

∑

perm(µ1,ν1,µ2,ν2)

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

+

− 1
32

∑

perm(µ1,ν1,µ2,ν2)

δ2D̃p′+2

δηµ1δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

+

1
4!16

∑

perm(µ1,ν1,µ2,ν2)

δD̃p′+2

δηµ1

δD̃p′+2

δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

)

=
∑

perm(µ1,ν1,µ2,ν2)

(− 1
64

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δηµ3δην3

+
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1
128

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

− 1
32

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δηµ3

δ2D̃p′+2

δην2δην3

+

− 1
32

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην3

δ2D̃p′+2

δηµ3δην2

+
1
64

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ3δην3

δD̃p′+2

δηµ2

δD̃p′+2

δην2

+

1
64

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην3

δD̃p′+2

δηµ3

δD̃p′+2

δην2

+
1
64

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δην2δην3

δD̃p′+2

δηµ3

δD̃p′+2

δηµ2

+

1
64

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δηµ3

δD̃p′+2

δην2

δD̃p′+2

δην3

+
1
64

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ3δην2

δD̃p′+2

δηµ2

δD̃p′+2

δην3

+

− 1
128

δ2D̃p′+2

δηµ1δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

+

1
32

δ2D̃p′+2

δηµ1δηµ3

δ2D̃p′+2

δην1δην3

δD̃p′+2

δηµ2

δD̃p′+2

δην2

+

− 1
4!32

δ2D̃p′+2

δηµ3δην3

δD̃p′+2

δηµ1

δD̃p′+2

δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

+

− 1
4!8

δ2D̃p′+2

δηµ1δην3

δD̃p′+2

δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

+

− 1
4!8

δ2D̃p′+2

δηµ1δηµ3

δD̃p′+2

δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δην3

+

1
4!64

δD̃p′+2

δηµ1

δD̃p′+2

δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

)

=
∑

perm(µ1,ν1,µ2,ν2,µ3,ν3)

(− 1
4!16

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δηµ3δην3

+

1
256

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

+

− 1
4!64

δ2D̃p′+2

δηµ1δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

+

1
6!64

δD̃p′+2

δηµ1

δD̃p′+2

δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

). (A.35)

For the fourth order correlation functions G8 has to be calculated using the expression
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of G6,

G8=


δ

δηµ4(l4)
− 1

2
δD̃p′+2

δηµ4(l4)




δ

δην4(l4)
− 1

2
δD̃p′+2

δην4(l4)

G6

= (
δ2

δηµ4δην4

− 1
2
δ2D̃p′+2

δηµ4δην4

− 1
2
δD̃p′+2

δηµ4

δ

δην4

+

−1
2
δD̃p′+2

δην4

δ

δηµ4

+
1
4
δD̃p′+2

δηµ4

δD̃p′+2

δην4

)×
∑

perm(µ1,ν1,µ2,ν2,µ3,ν3)

(− 1
4!16

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δηµ3δην3

+

1
256

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

+

− 1
4!64

δ2D̃p′+2

δηµ1δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

+

1
6!64

δD̃p′+2

δηµ1

δD̃p′+2

δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

)

=
∑

perm(µ1,ν1,µ2,ν2,µ3,ν3)

(
1

4!32
δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δηµ3δην3

δ2D̃p′+2

δηµ4δην4

+

− 1
4!64

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δηµ3δην3

δD̃p′+2

δηµ4

δD̃p′+2

δην4

+

1
256

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δηµ3δηµ4

δ2D̃p′+2

δην3δην4

+

1
256

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δηµ3δην4

δ2D̃p′+2

δηµ4δην3

+

− 1
512

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δηµ4δην4

δD̃p′+2

δηµ3

δD̃p′+2

δην3

+

− 1
512

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δηµ3δην4

δD̃p′+2

δηµ4

δD̃p′+2

δην3

+

− 1
512

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δην3δην4

δD̃p′+2

δηµ3

δD̃p′+2

δηµ4

+

− 1
512

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δηµ3δηµ4

δD̃p′+2

δην3

δD̃p′+2

δην4

+
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− 1
512

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δηµ4δην3

δD̃p′+2

δηµ3

δD̃p′+2

δην4

+

1
1024

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

δD̃p′+2

δηµ4

δD̃p′+2

δην4

+

− 1
128

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δηµ4

δ2D̃p′+2

δην2δην4

δD̃p′+2

δηµ3

δD̃p′+2

δην3

+

1
4!128

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ4δην4

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

+

1
4!32

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην4

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

δD̃p′+2

δηµ4

+

1
4!32

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δηµ4

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

δD̃p′+2

δην4

+

− 1
4!256

δ2D̃p′+2

δηµ1δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

δD̃p′+2

δηµ4

δD̃p′+2

δην4

+

1
4!64

δ2D̃p′+2

δηµ1δηµ4

δ2D̃p′+2

δην1δην4

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

+

− 1
6!128

δ2D̃p′+2

δηµ4δην4

δD̃p′+2

δηµ1

δD̃p′+2

δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

+

− 1
5!128

δ2D̃p′+2

δηµ1δην4

δD̃p′+2

δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

δD̃p′+2

δηµ4

+

− 1
5!128

δ2D̃p′+2

δηµ1δηµ4

δD̃p′+2

δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

δD̃p′+2

δην4

+

1
6!256

δD̃p′+2

δηµ1

δD̃p′+2

δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

δD̃p′+2

δηµ4

δD̃p′+2

δην4

=
∑

perm(µ1,ν1,µ2,ν2,µ3,ν3,µ4,ν4)

(
1

4!256
δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δηµ3δην3

δ2D̃p′+2

δηµ4δην4

+

− 1
4!128

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δ2D̃p′+2

δηµ3δην3

δD̃p′+2

δηµ4

δD̃p′+2

δην4

+

1
4!512

δ2D̃p′+2

δηµ1δην1

δ2D̃p′+2

δηµ2δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

δD̃p′+2

δηµ4

δD̃p′+2

δην4

+
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− 1
6!256

δ2D̃p′+2

δηµ1δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

δD̃p′+2

δηµ4

δD̃p′+2

δην4

+

1
8!256

δD̃p′+2

δηµ1

δD̃p′+2

δην1

δD̃p′+2

δηµ2

δD̃p′+2

δην2

δD̃p′+2

δηµ3

δD̃p′+2

δην3

δD̃p′+2

δηµ4

δD̃p′+2

δην4

). (A.36)

G2, G4, G6 and G8 are expressed in first and second order derivatives of D̃p′+2. These
derivatives are calculated in appendix B. The G’s are used to calculate correlation
functions with one or more orientation tensors S . According to Eq. (A.5b), (A.5c)
and (A.29), the following second order correlation functions are equal to

〈
Ŝ α
µ1ν1

(q
1
)ρβ(q

2
)
〉

0
=

lim
η→0

Vδ
(
q

1
+ q

2

)∑

l1,l2

σαl1σ
β
l2

G2 exp
(
−1

2
D̃p′+2

)
(A.37a)

and〈
Ŝ α
µ1ν1

(q
1
)Ŝ β

µ2ν2(q
2
)
〉

0
=

lim
η→0

Vδ
(
q

1
+ q

2

) ∑

l1,l2

σαl1σ
β
l2

G4 exp
(
−1

2
D̃p′+2

)
. (A.37b)

For third and fourth order correlation functions it is necessary to calculate G6 and
G8 if there are three or four orientation tensors coupled to each other. In Eq. (A.5b)
and (A.5c) the summations over l1 and l2 can be replaced by an integration over the
α- and β-block, respectively.

〈
Ŝ α
µ1ν1

(q
1
)ρβ(q

2
)
〉

0
=

lim
η→0

Vδ
(
q

1
+ q

2

) ∫

α
dl1

∫

β
dl2G2 exp

(
−1

2
D̃p′+2

)
(A.38a)

and〈
Ŝ α
µ1ν1

(q
1
)Ŝ β

µ2ν2(q
2
)
〉

0
=

lim
η→0

Vδ
(
q

1
+ q

2

) ∫

α
dl1

∫

β
dl2G4 exp

(
−1

2
D̃p′+2

)
. (A.38b)

The integrations over l1 and l2 can be calculated numerically. The other correlation
functions can also be written in a form similar to Eq. (A.38a) and (A.38b). This
form is the final result of the whole derivation of the correlation functions. These
correlation functions are necessary to calculate the Landau free energy.
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In this appendix the first and second order derivatives of D̃p′+2 are calculated. These
can be used to calculate the factors G2,G4, G6 and G8 that are given by Eq. (A.30b),
(A.34), (A.35) and (A.36). First the limit ∆L → 0 in the interval (l1 − ∆L, l1) is
considered. The index p = p1 corresponds to this interval. It can be derived that in
this limit Ap1 , Bp1 ,Cp1 ,Dp1 and Ep1 become

Ap1
→ Bp1

→
3λp1

2∆L
, (B.1a)

Cp1
=

i
2

∆L, (B.1b)

Dp1
→ −(∆L)3

18λp1

(B.1c)

and

Ep1
→

( 3λp1

4π∆L

) 3
2

. (B.1d)

To derive Ãp1+1, C̃p1+1, D̃p1+1 and Ẽp1+1, Eq.(A.25) is applied in which p′ is replaced
by p1 and the limit ∆L→ 0 is taken,

lim
∆L→0

∫
dup1

p1∏

p=1

∫
dup−1Ip exp

(
−3

4
u2

p−1 −
3
4

u2
p

)
=

lim
∆L→0

∫
dup1

∫
dup1−1Ẽp1 exp(−1

2
Ãp1u2

p1−1 −
1
2

Ap1u2
p1

+ Bp1up1−1 · up1
)×

exp(C̃p1
· up1−1 + Cp1 Q

p1
· up1

− 1
2

D̃p1). (B.2)
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For every tangent vector up the integrand Ip exp
(
−3

4 u2
p−1 − 3

4 u2
p

)
in Eq. (B.2) is con-

tinuous with respect to ∆L , 0. Therefore it is allowed to interchange the limit ∆L→
0 and the integrals over the tangent vectors up. Then Eq. (A.26a),(A.26b),(A.26c)
and (A.26d) can be inserted in Eq. (B.2), which gives,

∫
dup1

p1∏

p=1

∫
dup−1 lim

∆L→0
Ip exp

(
−3

4
u2

p−1 −
3
4

u2
p

)
=

∫
dup1

∫
dup1−1 lim

∆L→0
Ẽp1−1


2π

Ãp1−1


3
2
×

Ep1 exp
(
−1

2
Ap1u2

p1−1 −
1
2

Ap1u2
p1

+ Bp1up1−1 · up1

)
×

exp(−1
2

Ap1−1u2
p1−1 +

B2
p1−1

2Ãp1−1
u2

p1−1)×

exp(C̃p1
· up1−1 + Cp1 Q

p1
· up1

− 1
2

D̃p1). (B.3)

From Eq.(B.1a) and (B.1d) it follows that in the limit ∆L→ 0,

Ep1 exp
(
−1

2
Ap1u2

p1−1 −
1
2

Ap1u2
p1

+ Bp1up1−1 · up1

)
→ δ(up1

− up1−1). (B.4)

Then integrating over up1−1 in Eq. (B.3) yields,

∫
dup1

p1∏

p=1

∫
dup−1 lim

∆L→0
Ip exp

(
−3

4
u2

p−1 −
3
4

u2
p

)
=

∫
dup1

Ẽp1−1


2π

Ãp1−1


3
2
×

exp(−1
2

Ap1−1u2
p1

+
B2

p1−1

2Ãp1−1
u2

p1
)×

lim
∆L→0

exp(C̃p1
· up1

+ Cp1 Q
p1
· up1

− 1
2

D̃p1). (B.5)
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To derive Ãp1+1, C̃p1+1, D̃p1+1 and Ẽp1+1, Eq. (B.5) can be used in combination with

Ip1+1 exp
(
−3

4 u2
p1
− 3

4 u2
p1+1

)
, given by

Ip1+1 exp
(
−3

4
u2

p1
− 3

4
u2

p1+1

)
= Ep1+1 exp(−1

2
Ap1+1(u2

p1
+ u2

p1+1) + Bp1+1up1
· up1+1)

exp(Cp1+1Q
p1+1
· (up1

+ up1+1) − 1
2

Dp1+1Q2
p1+1). (B.6)

It follows that Ãp1+1, C̃p1+1, D̃p1+1 and Ẽp1+1 are equal to

Ãp1+1 = Ap1+1 + Ap1−1 −
B2

p1−1

Ãp1−1
, (B.7a)

C̃p1+1 = C̃p1
+ Cp1 Q

p1
+ Cp1+1Q

p1+1
, (B.7b)

D̃p1+1 = D̃p1 + Dp1+1Q2
p1+1, (B.7c)

and

Ẽp1+1 = Ep1+1Ẽp1−1


2π

Ãp1−1


3
2

. (B.7d)

For p = p2 + 1, p3 + 1 and p4 + 1 the same relations can be applied. For other p’s
we use Eq. (A.26a), (A.26b), (A.26c) and (A.26d). Eq. (B.7a) and (B.7d) have the
same form as Eq. (A.26a) and (A.26d). In the limit ∆L → 0 the contribution of the
p1-th interval has disappeared in Ãp1+1 and Ẽp1+1. In Eq. (B.7b) and (B.7c) the limit
∆L → 0 has not been taken yet. Taking the limit and applying Eq. (A.26b), (A.26c),
(B.1c) and (B.1d), it follows that,

C̃p1+1 = Cp1+1Q
p1+1

+ Cp1−1Q
p1−1

+
Bp1−1C̃p1−1

Ãp1−1
, (B.8a)

and

D̃p1+1 = Dp1+1Q2
p1+1 + D̃p1−1 −

C̃2
p1−1

Ãp1−1
. (B.8b)

These equations have also the same form as Eq. (A.26b) and (A.26c). In this form
C̃p1+1 and Ẽp1+1 do not depend on Q

p1
any more. So the η(l)-dependence of C̃p1+1

and Ẽp1+1 is lost. To derive the first and second order functional derivatives of C̃p1+1
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and D̃p1+1 with respect to η(l1), η(l2), η(l3) and/or η(l4), Eq. (B.7b) and (B.7c) are
used instead of Eq. (B.8a) and (B.8b). In these expressions the limit ∆L→ 0 has not
been taken yet and so that the η(l)-dependence is conserved. The functional derivative
is defined by Eq. (B.12). In this definition the limit ∆L→ 0 is included.

The derivatives of C̃p1+1 and D̃p1+1 must be known to calculate the first and sec-
ond order functional derivatives. According to Eq. (B.7b) the first order functional
derivative of C̃p1+1 is,

δC̃p1+1

δηµ1(l1)
=

δC̃p1

δηµ1(l1)
+ Cp1

δQ
p1

δηµ1(l1)
+ Cp1+1

δQ
p1+1

δηµ1(l1)
. (B.9)

In Eq. (B.9), C̃p1
is equal to,

C̃p1
= Cp1 Q

p1
+ Cp1−1Q

p1−1
+

Bp1−1C̃p1−1

Ãp1−1
, (B.10)

according to Eq. (A.26b). Now Eq. (B.9) can be written as,

δC̃p1+1

δηµ1(l1)
=

Bp1−1

Ãp1−1

δC̃p1−1

δηµ1(l1)
+ Cp1−1

δQ
p1−1

δηµ1(l1)
+

2Cp1

δQ
p1

δηµ1(l1)
+ Cp1+1

δQ
p1+1

δηµ1(l1)
. (B.11)

In Eq.(B.11) the functional derivative of Q
p

is defined as

δQ
p

δηµ1(l1)
≡ lim

∆L→0

1
∆L

∂Q
p

∂ηµ1(l1)
=

−ieµ1
lim

∆L→0

1
∆L

δpp1 = −ieµ1
δ(l1 − Lp), (B.12)

using Eq. (A.9). Therefore in Eq. (B.11) the first, second and fourth terms are zero,
because C̃p1−1, Q

p1−1
and Q

p1+1
do not depend on ηµ1(l1). In the third term Eq. (B.1c)

and (B.12) can be inserted which yields,

δC̃p1+1

δηµ1(l1)
= −2

i2

2
eµ1

lim
∆L→0

∆L
1

∆L
= eµ1

. (B.13)
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In the the same way it follows that

δC̃p1

δηµ1(l1)
=

1
2

eµ1
(B.14a)

and
δC̃p

δηµ1(l1)
= 0 for p < p1. (B.14b)

If p > p1 + 1, then the first order derivative is not zero. For p ≤ p′ Eq. (A.26b) can
be applied to calculate this first order derivative,

δC̃p

δηµ1(l1)
= Cp

δQ
p

δηµ1(l1)
+ Cp−1

δQ
p−1

δηµ1(l1)
+

Bp−1

Ãp−1

δC̃p−1

δηµ1(l1)
. (B.15)

The first and second term cancel out, because Q
p

and Q
p−1

are independent of ηµ1(l1).

The same terms cancel out in the first order derivative of C̃p−1, C̃p−2, C̃p−3 until

C̃p1+2. Then it follows that,

δC̃p

δηµ1(l1)
=

Bp−1

Ãp−1

Bp−2

Ãp−2
......

Bp1+1

Ãp1+1

δC̃p1+1

δηµ1(l1)
=

δC̃p1+1

δηµ1(l1)

p−p1−1∏

n=1

Bp−n

Ãp−n
= eµ1

p−p1−1∏

n=1

Bp−n

Ãp−n
, (B.16)

if p1 + 1 < p < p2 + 1. If p2 + 1 < p < p3 + 1, then

δC̃p

δηµ1(l1)
=

Bp−1

Ãp−1

Bp−2

Ãp−2
......

Bp2+1

Ãp2+1

δC̃p2+1

δηµ1(l1)
, (B.17)

in which the derivative of C̃p2+1 is the same as Eq. (B.11),

δC̃p2+1

δηµ1(l1)
=

Bp2−1

Ãp2−1

δC̃p2−1

δηµ1(l1)
+ Cp2−1

δQ
p2−1

δηµ1(l1)
+

2Cp2

δQ
p2

δηµ1(l1)
+ Cp2+1

δQ
p2+1

δηµ1(l1)
. (B.18)
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If l1 , l2, then p1 is not equal to p2 − 1, p2 and p2 + 1. Therefore the second, third
and fourth term are zero and only the first term remains in Eq. (B.18). Combining
Eq.(B.16), Eq. (B.17) and Eq. (B.18) yields,

δC̃p

δηµ1(l1)
= eµ1

p−p2−1∏

n=1

Bp−n

Ãp−n

p2−p1−1∏

n=1

Bp2−n

Ãp2−n
= eµ1

p−p1−1∏

n=1,
n,p−p2

Bp−n

Ãp−n
, (B.19)

In this form Eq. (B.19) has the same form as Eq. (B.16). The factor in which
n , p− p2 has been omitted. If p > p3 +1, p4 +1, ...etc., then factors with n , p− p3,

p − p4, ...etc are also removed from the multiplication. If p = p′ + 1, then Eq. (B.19)
can also be applied. This follows from Eq.(A.27b). For every p the second order
derivative is always zero,

δ2C̃p

δηµ1(l1)δην1(l1)
= 0, ∀p. (B.20)

The first and second order derivatives of C̃ are used to calculate and simplify the
derivatives of D̃ for every p. If p = p1 + 1, the first order functional derivative of
D̃p1+1 is,

δD̃p1+1

δηµ1(l1)
=

δD̃p1

δηµ1(l1)
+ 2Dp1+1Q

p1+1
·
δQ

p1+1

δηµ1(l1)
, (B.21)

using Eq. (B.7c). Because Q
p1+1

does not depend on ηµ1(l1), Eq. (B.21) becomes,

δD̃p1+1

δηµ1(l1)
=

δD̃p1

δηµ1(l1)
. (B.22)

Using Eq. (A.26c), Eq. (B.22) becomes

δD̃p1+1

δηµ1(l1)
= 2Dp1 Q

p1
·

δQ
p1

δηµ1(l1)
+
δD̃p1−1

δηµ1(l1)
−

2C̃p1−1

Ãp1−1
·
δC̃p1−1

δηµ1(l1)
. (B.23)

The derivatives of D̃p1−1 and C̃p1−1 are zero, so only the first term of Eq. (B.23)
remains. In the first term Eq. (B.1d) and (B.12) can be inserted so that

δD̃p1+1

δηµ1(l1)
= lim

∆L→0
2
(
− 1

18
(∆L)3

λp1

)
Q

p1
·
(
−ieµ1

1
∆L

)
= lim

∆L→0

i(∆L)2

9λp1

eµ1
· Q

p1
. (B.24)
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If we take the limit ∆L→ 0, then the first order derivative of D̃p1+1 goes to zero. The
second order derivative of D̃p1+1 becomes,

δ2D̃p1+1

δηµ1(l1)δην1(l1)
= lim

∆L→0

δ

δην1(l1)

(
i(∆L)2

9λp1

eµ1
· Q

p1

)
=

lim
∆L→0

(
i(∆L)2

9λp1

eµ1

)
·
(
−ieν1

1
∆L

)
= lim

∆L→0

∆L
9λp1

δµ1ν1 , (B.25)

which is also going to zero. In general if p ≤ p1 + 1, then the first and second order
derivatives of D̃p are zero,

δD̃p

δηµ1(l1)
= 0, (B.26a)

and
δ2D̃p

δηµ1(l1)δην1(l1)
= 0, for p ≤ p1 + 1. (B.26b)

However, these derivatives are in general nonzero for p > p1 + 1. From Eq. (A.26c)
it follows that,

δD̃p

δηµ1(l1)
= 2DpQ

p
·

δQ
p

δηµ1(l1)
−

2C̃p−1

Ãp−1
·
δC̃p−1

δηµ1(l1)
+

δD̃p−1

δηµ1(l1)
. (B.27)

If p > p1 + 1, then the first term cancels out. In the second term Eq. (B.16) can be
applied if p > p1 + 2.

δD̃p

δηµ1(l1)
=

δD̃p−1

δηµ1(l1)
−

2C̃p−1

Ãp−1
· eµ1

p−p1−1∏

n=2

Bp−n

Ãp−n
. (B.28)

If p = p1 + 2, then the first order derivative of D̃p is,

δD̃p1+2

δηµ1(l1)
=

δD̃p1+1

δηµ1(l1)
−

2C̃p1+1

Ãp1+1
· eµ1

=
δD̃p1

δηµ1(l1)
−

2C̃p1+1

Ãp1+1
· eµ1

→

−
2C̃p1+1

Ãp1+1
· eµ1

, (B.29)
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using Eq. (B.22). If p = p′ + 1 or p′ + 2 it becomes more difficult to calculate the
first order derivative of D̃p. The following equations can be derived,

δD̃p′+1

δηµ1(l1)
=
δD̃p′−1

δηµ1(l1)
−

2C̃p′−1

Ãp′−1
· eµ1

p′−p1−1∏

n=2

Bp′−n

Ãp′−n
,

if p2 = p′ > p1 + 2, (B.30a)

δD̃p′+1

δηµ1(l1)
= −

2C̃p′−1

Ãp′−1
· eµ1

, if p2 = p′ = p1 + 2 (B.30b)

δD̃p′+1

δηµ1(l1)
= 0,if p2 = p′ = p1, (B.30c)

δD̃p′+1

δηµ1(l1)
=

2C̃p′

Ãp′
· eµ1

,if p2 = p′ − 1 = p1, (B.30d)

δD̃p′+1

δηµ1(l1)
=

δD̃p′

δηµ1(l1)
−

2C̃p′

Ãp′
· eµ1

p′−p1−1∏

n=2

Bp′−n

Ãp′−n
,

if p2 = p′ − 1, p2 > p1, (B.30e)

δD̃p′+1

δηµ1(l1)
=

δD̃p′

δηµ1(l1)
−

2C̃p′

Ãp′
· eµ1

p′−p1−1∏

n=1

Bp′−n

Ãp′−n
,

if p′ > p2 + 1, (B.30f)

δD̃p′+2

δηµ1(l1)
= −

2C̃p′

Ãp′+1
· eµ1

, if p2 = p′ = p1, (B.30g)

δD̃p′+2

δηµ1(l1)
= −

2C̃p′

Ãp′+1
· eµ1

p′−p1−1∏

n=1

Bp′−n

Ãp′−n
,

if p2 = p′ > p1 and (B.30h)

δD̃p′+2

δηµ1(l1)
=
δD̃p′+1

δηµ1(l1)
−

2C̃p′+1

Ãp′+1
· eµ1

p′−p1∏

n=1

Bp′+1−n

Ãp′+1−n
,

if p′ > p2. (B.30i)

In Eq. (B.30g) and (B.30h) C̃p′ → Cp′−1Q
p′−1

+
Bp′−1C̃p′−1

Ãp′−1
in the limit ∆L→ 0. In
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Eq. (B.28) a differentiation can be carried out a second time with respect to ην1(l1),
which leads to

δ2D̃p

δηµ1(l1)δην1(l1)
=

δ2D̃p−1

δηµ1(l1)δην1(l1)
− 2

Ãp−1
δµ1ν1

p−p1−1∏

n=2


Bp−n

Ãp−n


2

, if p > p1 + 2, (B.31a)

and

δ2D̃p

δηµ1(l1)δην1(l1)
=

δ2D̃p−1

δηµ1(l1)δην1(l1)
− 2

Ãp−1
δµ1ν1 , if p = p1 + 2. (B.31b)

If Eq. (B.28) is differentiated with respect to ην2(l2), then there are several possibili-
ties,

δ2D̃p

δηµ1(l1)δην2(l2)
= 0, if p ≤ p2 + 1 (B.32a)

δ2D̃p2+2

δηµ1(l1)δην2(l2)
= − 2

Ãp2+1
δµ1ν2

p2−p1∏

n=2

Bp2+1−n

Ãp2+1−n
,

if p = p2 + 2 and p1 < p2 − 1 (B.32b)

δ2D̃p2+2

δηµ1(l1)δην2(l2)
= − 2

Ãp2+1
δµ1ν2 , if p = p2 + 2 and p1 = p2 (B.32c)

δ2D̃p

δηµ1(l1)δην2(l2)
=

δ2D̃p−1

δηµ1(l1)δην2(l2)
+

− 2

Ãp−1
δµ1ν2

p−p1−1∏

n=2

Bp−n

Ãp−n
×

p−p2−1∏

n=2

Bp−n

Ãp−n
, if p > p2 + 2. (B.32d)

It can be verified that Eq. (B.31a), (B.31b), (B.32a), (B.32b), (B.32c) and (B.32d)
are the same if p = p′ + 1 or p′ + 2. So now we also have found the second order
derivatives of D̃p′+2. The first order derivatives are given by Eq. (B.30g), (B.30h)
and (B.30i). These can be used to calculate the factors G2,G4, G6 and G8 given by
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Eq. (A.30b), (A.34), (A.35) and (A.36). The second order derivatives do not depend
on Q

p
any more. So third and higher order derivatives are zero.
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In Eq. (3.26) the integral,

I j =
1
V

∑

k

∫

V jk

d3x exp(i(q + q′) · x) =
∑

k

I jk, (C.1)

is restricted to the domains V jk belonging to the same director index j. If all domains
are translated by a certain vector xt then the integral I′j over the shifted space differs
only by a complex factor with respect to I j,

I′j =
1
V

∑

k

∫

V jk

d3x exp(i(q + q′) · (x + xt)) = I j exp(i(q + q′) · xt). (C.2)

By means of this translation property and the translation vectors xl = x1, x2 and x3
given by

x1 =
2π
3q∗

(n1 + n3) =
2π
q∗

1√
3

[1, 0, 0], (C.3a)

x2 =
2π
3q∗

(n2 + n1) =
2π
q∗

1√
3

[
1
2
,

1
2

√
3, 0], (C.3b)

and

x3 =
2π
3q∗

(n3 − n2) =
2π
q∗

1√
3

[
1
2
,−1

2

√
3, 0], (C.3c)

the integral over the whole space can be written as

1
V

∫
d3x exp(i(q + q′) · x) = δ(q + q′) =

I j + I j exp(i(q + q′) · xl) + I j exp(i(q + q′) · 2xl). (C.4)
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This becomes clear if we look at Fig. (3.1) in which the translation vectors x1, x2
and x3 are drawn. For example consider the domains in which n(x) = n2. These
n2-domains occupy 1

3 of the whole space. The remaining space can be covered by the
same n2-domains if we shift these domains by x1 and 2x1. Instead of x1 other trans-
lation vectors x2 and x3 can also be used to cover the remaining space. In the same
way the whole space can be covered by domains in which n(x) = n1 or n3. Therefore
in Eq. (C.4) the integral over the whole space can be split up in three integrals over
n1-, n2- and n3-domains which are shifted from each other by a translation x1, x2 or
x3. According to Eq. (C.4) the integral I j is equal to

I j =
δ(q + q′)

1 + exp(i(q + q′) · xl) + exp(i(q + q′) · 2xl)
. (C.5)

If in Eq. (C.5) the denominator is nonzero for every l the integral I j may also be
written as,

I j =
1
3
δ(q + q′). (C.6)

Eq. (C.5) has singularities at the wave vectors q and q′ for which,

(q + q′) · xl = ±2π
3

+ 2πkl with kl = 0,±1,±2, ... (C.7)

If Eq. (C.7) is satisfied for both x1, x2 and x3 then the integral I j cannot be determined
by Eq. (C.5). This does not occur if the wave vectors q and q′ are restricted to the set
H = Hhex ∪ Hnem in which Hhex = {±q∗n1,±q∗n2,±q∗n3} and Hnem = {0}. Then it is
allowed to express the integral I j by Eq. (C.6).
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The vertices Γ
(2)
ã̃b

, Γ
(3)
ã̃b̃c

and Γ
(4)
ã̃b̃cd̃

in the final form of the Landau free energy in chapter
2 depend only on the single-chain correlation functions Aã̃b, Bã̃b̃c and Cã̃b̃cd̃ in a quite
complicated way. So first the single-chain correlation functions must be calculated to
determine the vertices. The n-th order single-chain correlation function is an integral
over the chain positions l1, l2 and ln. From the expressions of the correlation functions
it is clear that it is not possible to work out the integral analytically.

The multidimensional integral is calculated by means of repeated integration
which is described in section 4.6 in [55]. In this method the multidimensional in-
tegral is written as a one dimensional integral over ln,

∫
dln fn(ln). (D.1)

The integrand fn is given by,

fn(ln) =

∫
dl1

∫
dl2...

∫
dln−2

∫
dln−1C(l1, l2, ..., ln). =

∫
dln−1 fn−l(ln−1, ln).

(D.2)
C(l1, l2, ..., ln) is the correlation between the points l1, l2 and ln on the chain. fn(ln) and
fn−l(ln−1, ln) are lower multidimensional integrals which can be written as one dimen-
sional integrals in the same way. The Romberg method, which is described on page
140 in [55], was first applied to calculate the one dimensional integrals numerically.
The speed of the integration becomes slower when the dimension of the multidimen-
sional integral becomes larger. The calculation time of the integration becomes also
larger when the persistent length of the chain is very small such that the chain can be
regarded as flexible. The integrand C(l1, l2, ..., ln) is the correlation between l1, l2 and
ln. So in a flexible chain the integrand becomes small or even negligible when l1, l2
and ln are far away from each other. Only when l1, l2 and ln are close enough to each
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other the integrand gives a great contribution to the integral. In the Romberg method
the whole interval is used to calculate the integral so that the integral is converging
slowly for a flexible chain. However, the Monte Carlo method appeared to be even
slower. In the Monte Carlo method repeated integration is not applied. The integrand
is calculated at random points (l1, l2, ..., ln) in the n-dimensional space, but such that
the distance among l1, l2 and ln is not too great. For some correlations functions it is
still necessary to take the whole interval into account.

In both the Romberg and Monte Carlo method the calculation speed gives prob-
lems especially when the fourth order single-chain correlations functions are calcu-
lated to determine the phase diagram. Each of these correlation functions are con-
verging much slower and there are much more combinations which have to be cal-
culated separately. Finally to calculate the spinodal and phase diagram Gauss-Jacobi
integration has been applied which gives an acceptable calculation time. This method
is described on page 147-161 in [55].

C(l1, l2, ..., ln) is the integrand of the single-chain correlation function which has
been expressed in Appendix A and B. In this integrand D̃p′+2 is calculated by re-
currence relations. These relations depend on the interval length ∆Lp which can
become zero or very small. This causes problems in the numerical calculation of
C(l1, l2, ..., ln). To solve this problem ∆Lp is taken equal to 10−9 × L, when ∆Lp ≤
10−9 × L. This has a negligible effect on the final result.

In the tensorial correlation functions G2, G4, G6 and G8 must be calculated. These
G’s depend on the first and second functional derivatives of D̃p′+2 with respect to
λµm(lm). These derivatives are expressed in Appendix B in a rather compact form
which has to be worked out further to implement it in an algorithm. It follows that
if lm is the starting point of the m-the interval, then the first and second derivative of
D̃p′+2 with respect to λµm(lm) are,

δD̃p′+2

δλµm

= −2eµm
·

C̃p′+1

Ãp′+1

Bp′

Ãp′
...

Bm

Ãm
+

C̃p′

Ãp′

Bp′−1

Ãp′−1
...

Bm

Ãm
+ ...

C̃m

Ãm

 (D.3a)

and

δ2D̃p′+2

δλµmδλνm

=
−2δµmνm

Ãp′+1


Bp′

Ãp′
...

Bm

Ãm


2

+
−2δµmνm

Ãp′


Bp′−1

Ãp′−1
...

Bm

Ãm


2

+ ...
−2δµmνm

Ãm
. (D.3b)
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If ln is the starting point of the n-th interval and ln > lm, then

δ2D̃p′+2

δλµmδλνn

=
−2δµmνn

Ãp′+1


Bp′

Ãp′
...

Bm

Ãm




Bp′

Ãp′
...

Bn

Ãn

 +

−2δµmνn

Ãp′


Bp′−1

Ãp′−1
...

Bm

Ãm




Bp′−1

Ãp′−1
...

Bn

Ãn

 + ... +

−2δµmνn

Ãn

[
Bn−1

Ãn−1
...

Bm

Ãm

]
. (D.4)

In the expressions of G4, G6 and G8 in Appendix A a summation is carried out
over the permutations of the indices µm of λµm(lm). In Eq. (D.3a) and (D.4) we see
that the second order derivative is nonzero if the indices are equal. So not every
permutation gives a contribution. Some permutations give the same nonzero contri-
butions, because it is allowed to interchange the first and second order derivatives
in each term and the sequence of differentiation in the second order derivative may
also be interchanged. So in G4, G6 and G8 the different groups of the same nonzero
contributions has to be found and how many times each one counts in the summation.
For example G4 is given by,

G4 =
1

32

∑

perm(µ1,ν1,µ2,ν2)

δ2D̃p′+2

δλµ1δλν1

δ2D̃p′+2

δλµ2δλν2

+

− 1
32

∑

perm(µ1,ν1,µ2,ν2)

δ2D̃p′+2

δλµ1δλν1

δD̃p′+2

δλµ2

δD̃p′+2

δλν2

+

1
4!16

∑

perm(µ1,ν1,µ2,ν2)

δD̃p′+2

δλµ1

δD̃p′+2

δλν1

δD̃p′+2

δλµ2

δD̃p′+2

δλν2

. (D.5)

In the first term two pairs of equal indices are necessary to be nonzero. If µ1 = ν1
and µ2 = ν2, then

δ2D̃p′+2

δλµ1δλν1

δ2D̃p′+2

δλµ2δλν2

, 0 (D.6a)

and
∑

perm(µ1,ν1,µ2,ν2)

δ2D̃p′+2

δλµ1δλν1

δ2D̃p′+2

δλµ2δλν2

= 8
δ2D̃p′+2

δλµ1δλν1

δ2D̃p′+2

δλµ2δλν2

. (D.6b)
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The group of permutations in which µ1 = µ2 and ν1 = ν2 or µ1 = ν2 and µ2 = ν1
also count 8 times in the summation over the permutations. If µ1 = ν1 = µ2 = ν2, the
permutations belong to both the first, second and third possible group and contribute
3 × 8 times. In the second term of G4 one pair of equal indices is necessary to be
nonzero. In the set {µ1, ν1, µ2, ν2} six different pairs can be formed. Each pair counts
4 times in the summation if the indices are equal. The last term contains only first
order derivatives, so the summation can be replaced by 4!. In G6 and G8 the groups of
nonzero contributions are found in the same way, but the number of possible groups
is greater.



Summary

In this thesis the phase behaviour of melts of chain-like molecules, also known as
polymers, is studied. Polymers are built from monomers. These monomers are con-
nected consecutively to form chains. If all monomers are of the same kind the chain
is called a homopolymer. The polymers studied in this thesis are block copolymers.
In a block copolymer different kinds of homopolymers or so-called blocks are con-
nected. For example a diblock copolymer consists of two different kinds of blocks A
and B connected to each other.

Chains in a melt are not moving independently of each other. There are different
kinds of interactions between the chains. The Flory-Huggins interaction describes
the incompatibility between chemically different kinds of blocks. This means that
different kinds of blocks generally do not mix very well, as they are repelling each
other. At high enough temperatures this interaction has a weak influence. The chains
are moving fast such that the arrangement of chains is arbitrary. This is the disor-
dered phase. If the temperature is lowered the chains are moving slower and the
Flory-Huggins interaction becomes more dominant. At a certain critical temperature
a phase transition takes place. When the temperature becomes lower than the crit-
ical temperature the disordered phase is converted into an ordered structure. In the
ordered structure blocks avoid each other if they are chemically different. Little do-
mains arise in which the density of a certain kind of block is greater than average.
This is called microphase separation. Just below the critical temperature the degree
of separation is very weak. When the temperature is further lowered the separation
becomes more pronounced. For example in a melt of diblock copolymers A-rich and
B-rich domains are formed. Different kinds of microphase structures are possible
such as for example the bcc, hexagonal and lamellar structure. In the bcc structure
the A-rich domains are spheres arranged on a cubic lattice. Outside the spheres the
density of B-blocks is greater than average. In the hexagonal structure a B-rich ma-
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trix embeds A-rich cylinders. The cylinders are arranged in a honeycomb structure.
In the lamellar phase the A- and B-rich domains are alternating layers.

In the past decades much attention has been paid to block copolymers that are
totally flexible. In this thesis the effect of chain stiffness is taken into account. This
makes the description of the polymers more general and more realistic. In a chain
each block has a certain bending stiffness depending on the kind of monomer. Such
block copolymers are called semi-flexible. A certain amount of energy is needed to
bend a semi-flexible chain. If the bending stiffness of a block is infinite the block
is rigid and hence cannot be bent and when the stiffness is zero the block is to-
tally flexible. Due to this chain stiffness another interaction is important which is
the Maier-Saupe interaction. At high enough temperatures this interaction also has
a weak influence due to the fast movement of the chains. However, when the tem-
perature becomes lower than a certain critical temperature the disordered phase is
converted into the nematic structure by the Maier-Saupe interaction. In the nematic
structure the chains prefer to be aligned on average along the same direction. This
orientation is very weak just below the critical temperature, but at lower tempera-
tures it becomes stronger. In the nematic phase there is no separation of chemically
different blocks. Due to the stiffness other structures may also appear such as the
smectic-A and smectic-C structure. In these structures there is both separation and
orientation of blocks. For example in a melt of semi-flexible diblock copolymers the
A-rich and B-rich domains form alternating layers in the same way as in the lamellar
structure belonging to a flexible diblock copolymer melt. In the smectic-A structure
the semi-flexible diblocks prefer to be oriented perpendicular to the layers while in
the smectic-C structure the orientation direction of the blocks is at a fixed non-zero
angle with respect to the normal of the layers. Orientation of semi-flexible blocks
also occurs in the bcc and hexagonal structures. In the nematic structure the align-
ment is along the same direction everywhere in the melt. However, in a microphase
structure the orientation is typically spatially dependent.

In this thesis the Landau theory has been applied to predict/calculate the phase
structure of block copolymers. This theory is valid if the temperature is close to
the critical temperature at which the phase transition takes place from the disordered
phase to an ordered structure. In chapter two the Landau theory pertaining to a very
general polymer melt is considered. This melt is a mixture of different kinds of block
copolymers. The composition of the mixture, number of blocks in a chain, block
length and stiffness of a block can be chosen arbitrary.

This general theory is applied to a simple system consisting of monodisperse di-
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block copolymers in chapter three. This means that the length of both the A- and
B-block is identical for each chain in the melt. For this system several predicted
phase diagrams are discussed in which the chain composition, stiffness and strength
of the Flory-Huggins and Maier-Saupe interaction are varied. In these phase dia-
grams the bcc, hexagonal, lamellar, smectic-A, smectic-C and nematic structure are
observed. From the results the following conclusions can be drawn. It appears that
the order-disorder phase transition takes place at a higher temperature if the stiffness
of the A- or B-block is increased. Furthermore the separation of A- and B-blocks in
a microphase structure is weakened if the strength of the Maier-Saupe interaction is
increased. At the same time the domain size becomes smaller. In a microphase struc-
ture a spatially dependent orientation is necessary to separate A- and B-blocks. How-
ever, the Maier-Saupe interaction favors a global alignment in one direction to form
a nematic phase. This reduces the spatially dependent orientation in a microphase
structure so that the separation of A- and B-blocks is also reduced.

The diblock copolymers that are considered in chapter three are monodisperse.
In reality it is usually difficult to synthesize such identical diblocks. Usually there
is a certain degree of polydispersity in block length present. The effect of this poly-
dispersity is considered in chapter four. In a polydisperse system in some chains the
length of the A-block is larger than average and in other chains it is smaller. The
length of the B-block is also variable and usually independent of the length of the
A-block. Due to polydispersity, instead of microphase separation, macrophase sep-
aration is possible. The ultimate macrophase structure is a melt with one big A-rich
and one big B-rich domain. The A-rich domain is formed by collecting diblocks with
an A-block fraction greater than average. The remaining diblocks form the B-rich
domain. The length scale of the A-rich and B-rich domain is much greater than the
average length of a diblock chain. If the diblocks are monodisperse only microphase
separation is possible with a small domain size. The results in chapter four suggest
that the order-disorder phase transition takes place at a higher temperature when the
degree of polydispersity becomes larger. At the same time the domain size in a mi-
crophase structure increases. In certain systems the domain size may even become
infinite which then corresponds to macrophase separation.

In chapter five the phase behaviour of a melt of monodisperse ABA-triblocks
copolymers is investigated. In an ABA-triblock copolymer a block of kind B is con-
nected on both sides to an A-block. As in chapter three several predicted phase
diagrams are discussed in which the chain composition, stiffness and strength of the
Flory-Huggins and Maier-Saupe interaction is varied. The phase behaviour of such
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a melt does not differ very much from that of the diblock melt considered in chapter
three. In the phase diagrams the same structures are found. The Maier-Saupe interac-
tion is again weakening the separation of A- and B-blocks in a microphase structure
if its strength is increased. However, the order-disorder phase transition occurs at
a higher temperature if the ABA-triblocks are replaced by diblocks with the same
length and the same A-block fraction. In that case the domain size is bigger when a
microphase structure is formed at the phase transition.



Samenvatting

In dit proefschrift wordt het fasegedrag van smelten van ketenachtige moleculen, ook
bekend als polymeren, bestudeerd. Polymeren zijn opgebouwd uit monomeren. Deze
monomeren zijn op een lineaire wijze met elkaar verbonden in lange ketens. Indien
alle monomeren van dezelfde soort zijn, wordt de keten een homopolymeer genoemd.
De polymeren bestudeerd in dit proefschrift zijn blokcopolymeren. In een blok-
copolymeer zijn verschillende soorten homopolymeren of zogeheten blokken met
elkaar verbonden. Een diblokcopolymeer bijvoorbeeld bestaat uit twee verschillende
soorten blokken A en B die aan elkaar gekoppeld zijn.

Ketens in een smelt bewegen niet onafhankelijk van elkaar. Er zijn verschil-
lende soorten interacties tussen ketens. De Flory-Huggins interactie beschrijft de
incompatibiliteit tussen chemisch verschillende soorten blokken. Dit betekent dat
chemisch verschillende blokken in het algemeen niet erg goed mengen aangezien ze
elkaar afstoten. Bij voldoende hoge temperatuur heeft deze interactie een geringe in-
vloed. De ketens bewegen zo snel dat de rangschikking of conformatie van de ketens
willekeurig is. Dit is de wanordelijke fase. Indien de temperatuur verlaagd wordt,
bewegen de ketens langzamer en wordt de Flory-Huggins interactie belangrijker. Bij
een bepaalde kritische temperatuur vindt een faseovergang plaats. Wanneer de tem-
peratuur beneden de kritische temperatuur daalt wordt de wanordelijke fase omgezet
in een geordende structuur. In deze geordende structuur mijden blokken elkaar in-
dien ze chemisch verschillend zijn. Er onstaan kleine gebieden waarin de dichtheid
van een bepaald soort blok groter is dan gemiddeld. Dit wordt microfase scheid-
ing genoemd. Net beneden de kritische temperatuur is de mate van scheiding zeer
gering. Wanneer de temperatuur verder verlaagd wordt, wordt de scheiding markan-
ter. In een diblokcopolymeersmelt worden zo A-rijke en B-rijke gebieden gevormd.
Verschillende soorten microfase structuren zijn mogelijk zoals bijvoorbeeld de body
centered cubic (bcc), hexagonale en lamellaire structuur. In de bcc structuur zijn de
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A-rijke gebieden bollen gerangschikt op een simpel kubisch rooster. Buiten de bollen
is de dichtheid van de B-blokken groter dan gemiddeld. In de hexagonale structuur
zijn A-rijke cylinders ingebed in een B-rijke matrix. De cilinders zijn gerangschikt
in een honingraat structuur. In de lamellaire fase vormen de A- en B-rijke gebieden
alternerende lagen.

In de afgelopen decennia is veel aandacht besteed aan de studie van het fasege-
drag van smelten van volledig flexibele blokcopolymeren. In dit proefschrift is het ef-
fect van ketenstijfheid hierop bestudeerd. Dit maakt de theoretische beschrijving van
polymeren algemener en meer realistisch. In een keten heeft ieder blok een bepaalde
buigstijfheid afhankelijk van het soort monomeer waaruit het is opgebouwd. Zulke
blokcopolymeren worden semi-flexibel genoemd. Een bepaalde hoeveelheid energie
is nodig om een semi-flexibele keten te buigen. Indien de buigstijfheid van een blok
oneindig groot is, is het blok star en kan het derhalve niet gebogen worden en wan-
neer de stijfheid nul is, is het blok volledig flexibel. Vanwege deze ketenstijfheid is
nog een andere interactie belangrijk de zogeheten Maier-Saupe interactie. Bij hoge
temperaturen heeft deze interactie eveneens een geringe invloed vanwege de snelle
beweging van de ketens. Echter wanneer de temperatuur beneden een bepaalde kri-
tische temperatuur komt zorgt de Maier-Saupe interactie ervoor dat de wanordeli-
jke fase over gaat in de zogeheten nematische fase of structuur. In de nematische
structuur prefereren de blokken om gemiddeld in dezelfde richting opgelijnd te wor-
den. Deze oriëntatie is zeer zwak net beneden de kritische temperatuur, maar wordt
bij lagere temperaturen markanter. In de nematische fase is er geen scheiding van
chemisch verschillende blokken. Vanwege de combinatie van ketenstijfheid en blok-
copolymeerkarakter kunnen ook andere structuren voorkomen zoals de smectische-A
en smectische-C structuur. In deze structuren is er zowel scheiding als oriëntatie van
blokken. In een smelt van bijvoorbeeld semi-flexibele diblokcopolymeren vormen de
A-rijke en B-rijke gebieden alternerende lagen op dezelfde manier als in de lamel-
laire structuur behorende bij een flexibele diblokcopolymeersmelt. In de smectische-
A structuur prefereren de semi-flexibele diblokken om geörienteerd te zijn loodrecht
op de lagen terwijl in de smectische-C structuur de blokken de voorkeur geven om
georiënteerd zijn in een richting die een vaste hoek (ongelijk aan nul) maakt met de
normaal van de lagen. Oriëntatie van semi-flexibele blokken wordt ook aangetrof-
fen in de bcc - en de hexagonale structuur. In de nematische structuur is er sprake
van een globale oriëntatie in de smelt. Echter, in een microfase structuur vertoont de
oriëntatie typisch een ruimtelijke afhankelijkheid.

In dit proefschrift is de zogeheten Landau theorie toegepast om de fasestruc-
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tuur van blokcopolymeren te voorspellen/berekenen. Deze theorie is geldig indien de
temperatuur dichtbij de kritische temperatuur ligt waarop de faseovergang plaatsvindt
van de wanordelijke fase naar een geordende structuur. In hoofdstuk twee wordt de
Landau theorie betrekking hebbende op een zeer algemene polymeersmelt beschouwd.
Deze smelt is een mengsel van verschillende soorten blokcopolymeren. De samen-
stelling van het mengsel, het aantal blokken in een keten en de lengte en stijfheid van
een blok kunnen willekeurig gekozen worden.

Deze algemene theorie wordt toegepast op een eenvoudig systeem bestaande uit
een monodisperse diblokcopolymeersmelt in hoofdstuk drie. Dit betekent dat de
lengte van zowel het A- als het B-blok identiek gekozen wordt voor iedere keten
in de smelt. Van dit systeem worden in dat hoofdstuk verschillende voorspelde fase-
diagrammen bediscussieerd waarin de ketensamenstelling, stijfheid en sterkte van de
Flory-Huggins en Maier-Saupe interactie gevarieerd wordt. In deze fasediagrammen
worden de bcc, hexagonale, lamellaire, smectische-A, smectische-C en nematische
structuur waargenomen. Uit de resultaten kunnen de volgende conclusies getrokken
worden. Het blijkt dat de orde-wanordefaseovergang plaatsvindt bij hogere tempera-
turen indien de stijfheid van het A- of het B-blok toeneemt. Verder wordt de schei-
ding van A- en B-blokken in een microfase structuur geringer indien de sterkte van
de Maier-Saupe interactie verhoogd wordt. Tegelijkertijd wordt de gebiedsafmeting
kleiner. In een microfase structuur is een ruimtelijk afhankelijke oriëntatie noodzake-
lijk om A- en B-blokken te scheiden. Echter de Maier-Saupe interactie prefereert een
globale oriëntatie teneinde de nematische fase te vormen. Dit reduceert de ruimtelijk
afhankelijke orientatie in een microfase structuur zodat de scheiding van A- en B-
blokken ook daarmee gereduceerd wordt.

De diblokcopolymeren die beschouwd worden in hoofdstuk drie zijn monodis-
pers. In werkelijkheid is het doorgaans moeilijk om zulke identieke diblokcopoly-
meren te synthetiseren. Doorgaans is er een bepaalde mate van polydispersiteit in
bloklengte aanwezig. Het effect van deze polydispersiteit wordt beschouwd in hoofd-
stuk vier. In een polydispers systeem is in sommige ketens de lengte van het A-blok
groter dan gemiddeld en in andere ketens is deze kleiner. De lengte van het B-blok
is ook variabel en doorgaans onafhankelijk van de lengte van het A-blok. Vanwege
polydispersiteit is, in plaats van microfase scheiding, macrofase scheiding mogelijk.
De ultieme macrofase structuur is een smelt met één groot A-rijk gebied en één groot
B-rijk gebied. Het A-rijke gebied wordt gevormd door het verzamelen van diblokken
met een A-blok fractie groter dan gemiddeld. De resterende diblokken vormen het
B-rijke gebied. De lengteschaal van het A-rijke en B-rijke gebied is veel groter dan
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de gemiddelde lengte van een diblokcopolymeerketen. Indien de diblokken monodis-
pers zijn, is alleen microfase scheiding mogelijk met een kleine gebiedsafmeting. De
resultaten in hoofdstuk vier suggereren dat de orde-wanorde faseovergang plaatsvindt
bij een hogere temperatuur wanneer de polydispersiteit groter wordt. Tegelijker-
tijd neemt de gebiedsafmeting in een microfasestructuur toe. In bepaalde systemen
kan de gebiedsafmeting zelfs oneindig groot worden hetgeen dan correspondeert met
macrofasescheiding.

In hoofdstuk vijf wordt het fasegedrag van een smelt van monodisperse ABA-
triblokcopolymeren onderzocht. In een ABA-triblokcopolymeer is een blok van soort
B aan beide kanten verbonden met een A-blok. Op dezelfde manier als in hoofd-
stuk drie worden verschillende voorspelde fasediagrammen bediscussieerd waarin de
ketensamenstelling, stijfheid en sterkte van de Flory-Huggins en Maier-Saupe inter-
actie gevarieerd wordt. Het fasegedrag van zo’n smelt verschilt niet erg veel van
dat van de diblokcopolymeersmelt die in hoofdstuk drie bestudeerd wordt. In de
fasediagrammen worden dezelfde type structuren gevonden. De Maier-Saupe inter-
actie verzwakt wederom de scheiding van A- en B-blokken in een microfasestruc-
tuur indien de sterkte hiervan toeneemt. Echter de orde-wanorde faseovergang vindt
plaats bij een hogere temperatuur indien de ABA-triblokken vervangen worden door
diblokken met dezelfde lengte en dezelfde A-blok fractie. In dat geval is de gebied-
safmeting groter wanneer een microfasestructuur gevormd wordt bij de faseovergang.
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